
,-RiGI 033 NESTED TRANSACTIONS CONFLICT-BASED LOCKING AND DYNAMIC 1/1
ATOMICITY(U) MRSSRCHUSETTS INST OF TECH CAMORIDGE LAB
FOR COMPUTER SCIENCE A FEKETE ET AL SEP 87

UNLASSIFIED MIT/LCS/TM-140 N88814-85-K-B168 F/G 12/7? UIUEEUhCLhh~i
E7iEEE1h hh

12*5

III~ ~:

-

MO MASSACHUSETTS

LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

o

-~ ~fflC FLE CONI

MIT/LCS/rM-340

NESTED TRANSACTIONS,
CONFLICT-BASED LOCKING,
AND DYNAMIC ATOMICITY

Alan Fekete DT IC
Nancy Lynch IIELECTE

Michael Merritt No.v I '
William Weihli

September 1987
fii document has been approved .

jfor public release and sale; ib I
distribution is unlimited.

545 TECHNOI.OU;Y SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

7 1 17 108

MCRIf L &51ICTNOmTI PG
REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION 16 RESTRICTIVE "ARIKIGIS

Unclassified_________________________
2. SECURITY CLASSIFICATION AUTHORITY 3 DISTIUUTIONdIAVALAULITY OF IMPORT

2b. DECLASSiFICATION IDOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANZATION REPORT NUNIKAMS

MIT/ LCS/Th-340 N00014-85-K-0168 & NOOO4-83-K-0125

6. NAME OF PERFORMING ORGANIZATION 16b OFFICE SYMBOL 7a NAME OF MONJITORING 011116MATON
HIT Laboratory for Computer (N app#W Office of Naval Research/Department of Navy
Science

kc. ADDRESS (Coty. Stat, and ZIP Code) 7b. ADDRESS (Cdy. SW. SW A aCnW

545 Technology Square Information Systems Pr~gran

Cambridge, MA 02139 Arlinpton, VA 22217

Sa. NAME OF FUNDINGI SPONSORING Sto OFFICE SYMBOL 19 PROCUREMENT OSTIUIN SMIPICAVO MJN
ORGANIZATION (if opokObh)

DARPA/DOD I
kc ADDRESS (Ciry, State. and ZIP Code) 10 SOURCE O S5D116%Mf

1400 U'iison Blvd. PROGRAM Mgac? a
Arlington, VA 22217 ELEMENT No NO to EQIN

11. TITLE foincude Secry CoasudlecatmonJ

NESTED TRANSACTIONS, CONFLICT-BASED LOCKING,* AND WfNANIC ATONICITY

12 PERSONAL AUTHOR(S)
Fekete. Alan. Lynch, Nancy Merritt, Michael; and Weihi, Williamel

13a TYPE OF REPORT 13b TIME COVERED 14 DATE Of RE1pORT tvf~lw S cow
Technical FROM TO 1967 Soe tmr

16 SUPPLEMENTARY NOTATION

,7COSATI CODES 18 SUBJECT TERMS (COM aw on rovWWs of oai"' &W aw14BB 4ffw
FIELD GROUP SUB GROUP nested transactions, atomic actions, concurraucY Controls

recovery, databases, serializability, comolutative opera-
tions, locking rules ~ 1

19 ASTRATtinue onl reverse it necessary 8Idntify by black VnifAbff
In this paper wdiexainn some concurrency control algorithms for oasted transaction

systems. - -We---dsf.±, p simple local property called dynamic atomicity/for data objects

in such a system, and we show that all the executions of a system are serially correct
(despite concurrency and trappion aborts) provided each data object is dynamic atomic.

4Je-Tben-apply this result' ive a correctness proof for a new algorithm, called Conflict-

Based Locking,-"for managing data in a nested transaction system. The algorithm uses a
table specifying which operations may not proceed concurrently to determine when an
operation may be granted a lock on an object. The algorithm is an extension of a general
conflict-based locking protocol introduced by Weihl for transaction systems without nest-
ing. It is also similar to Moss' algorithm, which uses read- and write-locks and a
stack of versions of each object to ensure the serializability and recoverability of
transactions accessing the data. We show that objects implemented using Moss' algorithm
of the new Conflict-Based Locking algorithm are dynamic atomic. Thus it follows that if

20 D!SIRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFIC.ATION -

GUNCLASSIFIEDUNLIMITED 0 SAME AS RPT 0 DTIC USERS Unt-lassif led ,i34

2do NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONIE ~wOnc Area od.) 2C OFFICESYMBOLI
JuvLitt e. Publications Coordinator (617) 253-5894

0O FORM 1473. 84 MAR 83 APR editionl may D. = o utl eiuhaustea SCRITY CLSIFICATION OFTHIS PAG
All Wt~ edotIOns are 065010W

IIILIL m m m UUs40ww

Unclassified

19. each object in a nested transaction system uses either Moss' algorithm

or the now Conflict-Based Locking algorithm, then all executions of the

system will be serially correate

ToT

ea?

~y~C o

Nested Transactions,

Conflict-Based Locking,

and Dynamic Atomicity

Alna Feketel

Nancy Lynch'

Michael Merritt'

William Weihi'

Abstract: In this paper we examine some concurrency control algorithms for nosted transaction systems.

We define a simple local property called dgmmic .tomicit for data objects in such a system, and we

show that all the eeutions of a system ae serially correc (despite concurrency and transaction aborts)

provided each dau object is dynamic atomic. We then apply this result to give a correctness proof for a

new algorithm, called Conflid-Based Loekng, for managing data in a nested transaction system. The

algorithm uses a table specifying which operations may not proceed concurrently to determine when an

operation a be prted" a lock on an object. The alorithm is an extemiom of a general coflit-based
locking protocol introduced by Weihi for transactim system without nesting. It is also similar to Moss'

algorithm, which uses read- and write-locks and stack of version. of each object to ensure the

serializability and recoverability of transactions aceming the data. We show that objects implemented
using Moss' algorithm or the new Oonflict-Bssd Locking dorithm ae dynamic atomic. Thus it follows

that if each object in a nested transaction ssem uses teir Moss' algoritm o the new Conflict-Baued
Locking algorithm, then all execuos of the system will be serially eorrect.

Keywords: nested tramactioes atomic aetio, eoeurrmcy cmtrl, recovey, dtaba , serialisability,

commutative operations, locking rules.

September 8, 19W
01067 Momahuseus Institute of Techmolog, Cambridge, MA 02139

lLabwaror Computer Seleace, MuSwlhmtS hwiUate of Teehsdss1, Ctemds., MumL

2La b or ompue , itoT 8,, M a W b wAte o Teeba C ae, MW&

3ATT Wd LAbulo Merey iM, New Jew.
4LebnseEy fo Compe &eeee, UmeemIsW of r Tehasa, Cakdge, 14m

Table of Contents
1. Introduction 1
2. I/O Automata 5
3. Serial Systems 6

3.1. Transactions 8
3.2. Basic Objects 10
3.3. Serial Scheduler 12
3.4. Serial Systems and Serial Schedules 14
3.5. Visibility 16
3.6. Serial Correctness 17

4. Generic Systems 18
4.1. Generic Objects 18
4.2. Generic Controller 19
4.3. Generic Systems 21

5. Reordering Events: Return Order and the Affects Order 22
5.1. Return Order 23
5.2. Affects Order 23
5.3. Visibility 26

6. Proving Serial Correctness 27
6.1. The Serial Correctness Theorem 27
6.2. Dynamic Atomicity 29
6.3. Local Information 30

7. Semantic Conditions 33
7.1. Equieffective Schedules 33

7.1.1. Commutativity 34
7.2. Transparency 36

8. Conflict-Based Locking Objects 36
8.1. Properties of W(X) 38

9. R/W Locking objects 41
9.1. The relationship between M(X and W(X) 44

10. Conclusions and F arther Work 48
11. Acknowledgements 49
12. References 49

Nested Transactions,

Conflict-Based Locking,

and Dynamic Atomicitys

1. Introduction
A major part of database research over several years has been the design and analysis of algorithms to

maintain consistent data in the face of interleaved accesses, aborts of operations, replication of

information and failures of system components. The most popular and simple protocol is two phase

locking with separate read and write locks; other methods include arbitrary conflict-based locking,

timestamp-based techniques, and locking that uses special structure of the data (e.g. a hierarchical

arrangement) ([T],[We] and many others). A powerful theory has been developed to prove the correctness

of these algorithms, based on the idea that a protocol is correct if it ensures that all executions are

equivalent to serial executions EGLTI,[PJ,IBG. This theory proves serializability by showing that a

precedence graph contains no cycles.

Recently, some ideas in database system design and more general distributed system design have led

several research groups to study the possibility of giving more structure to the transactions that are the

basic unit of atomicity. When a transaction can contain concurrent operations that are to be performed

atomically, or operations that can be aborted independently, we say that the operations form

eubtransactions of the original transaction. Thus we consider a system where transactions can be nested.

This idea was first suggested by Davies under the name spheres of control [D]. A primitive example of

this concept is implemented in System R, where a transaction can be restarted at the last savepoint. In

general distributed systems like Argus [LiS,LHJLSW] or Clouds [A], the basic services are often provided

by Remote Procedure Calls which, at their best (*At Most Once" semantics), are atomic. Since providing

a service will often require using other services, the transactions that implement services ought to be

nested.

The implementation of a nested transaction system requires extending the algorithms that have

previously been considered for concurrency control, recovery and replication. The work of Reed [R]

$The work of the second author (and through her, the work of the first author) was supported in part by the Office of Naval

Research under Contract NO001-8-K.016S, by the Office of Army Research under contract DAAG29-84-K-O0&R, by the National
Seirnee Foundation un-ler Grants MCS-R3OSSJ,4, DCR-&-OO91, and CC-86l 1442, and by the Defense Advanced Research Projects
Agency (DARPA) under Contract N00014-&K-0125. The work of the fourth author was supported in part by the National Science
Foundation under Grant DCR-510014, by the Defense Advanced Research Projects Agency (DARPA) under Contract
N00014-3-K-0126, and by an IBM Faculty Development Award.

extended multi-verson timestamp coneurrency control to provide nested tWansaction data managpment.

Moss [Mo] extended two phase locking with separate read and write locks to handle nesting, and this

algorithm is the basis of data smapment in the Argus system implemented at MIT.

In this paper we develop a powerful method for showing the correctness of concurrency control

algorithms for nested transaction systems. We introduce a simple local property, which we call dynamic

atomicity, and we show that a system is serially correct for non-orphan transactions (as defined for nested

systems in [LM]) provided each object in the system is dynamic atomic. The corresponding definitions

and results for systems without nesting were first given by Weihl [We]. Our discussion covers both

concurrency control and recovery from aborts. However, we do not consider all the failure cases that the

real system must deal with, as our model does not yet include crashes that compromise the system state.

To illustrate the power of these ideas, we introduce here a new algorithm for concurrency control in

nested transaction systems. Our algorithm allows more concurrency than Moss' algorithm by using

semantic information about conflicts between operations of abstract data objects. As an example of such

semantic information, consider a data obj*et that represents a bank account, with operations

DEPOSIT(AMT), WITHDRAW(AMT), and BALANCE. The DEPOSIT operations modify the state of the

object, so ordinary Read/Write locking would not allow two DEPOSIT operations to run concurrently.

However, there is really no harm in allowing this concurrency if the operations are implemented

appropriately (for example, by recording an *intention to deposit* in the object's history) since the final

balance is independent of the order in which the deposits are performed. This property is usually

described by saying that the two DEPOSIT actions Ocommutem, and that therefore their locks need not

"conflict'. The algorithm we give combines the techniques of Moss' algorithm with the arbitrary

conflict-based (but un-nested) locking algorithm of Weihl [We].

We prove that any object implemented using our "Conflict-Based Locking" algorithm is dynamic

atomic, and thus that a system in which the objects are implemented this way is serially correct. We also

show that objects implemented using Moss' algorithm for Read/Write Locking are dynamic atomic. We

believe that other concurrency control techniques can also be proved to yield dynamic atomic objects. The

results in this paper show that a nested trnsaction system is serially correct if each object is implemented

using a concurrency control meehanism that guarantees dynamic atomicity.

This paper is part of a major research effort to offer clean, readable descriptions of algorithms for

managing data in a nested transaction system, together with rigorous proofs of the correctness of these

algorithms. Other parts of the project include studying replicated data management algorithms GLJ,

orphan elimination alorithms JHLMWJ, and concurrency control using timestamps [As]. All this work is

based on a simple model of concurrent systems using I/0 automata and at operational style of reasoning

3

about their schedules. The first fruits of this program are detailed in ILM], which proves the correctness

of exclusive locking, and provides a basic framework for presenting the ideas of this paper.

In this paper, we first review the I/O automaton model of computation. This is similar to models like

Communicating Sequential Processes lHo], in that automata interact by synchronizing on shared

operations. The main difference from other models is that we distinguish the input and output operations

of each automaton. Any operation shared between components of a system can be an output of at most

one component, and that component is in control of the operation, because no automaton is allowed to

refuse to execute an input. Though automata have states as well as operations, we concentrate our

analysis on the sequence of operations performed (the schedule of the system) - this operational mode of

reasoning is quite different from assertional invariant methods used elsewhere in reasoning about

distributed systems, but we find it very powerful and yet simple for the set of problems we consider.

Next, we show how to use I/O automata to model the parts of a nested transaction system. Each

transaction process is represented by an automaton, as is each data object. The actions of calling a

subtransaction, invoking an access to an object, and returning a result are each split into two operations,

one requesting the action and one delivering the request to the recipient. The request operation is an

output of the caller and an input to the controller (which acts as a communication system) while the

delivery operation is an output of the controller and an input of the recipient. Thus, each transaction

(and each object) shares operations only with the controller. A serial system is the result of composing

transaction and object automata with a very restricted controller called the serial scheduler, which runs

the subtransactions of any transaction sequentially (with no concurrency between siblings) and only

aborts transactions before they start running. The serial scheduler is very simple to understand and is

used as the basis of our correctness condition.

We then introduce a generic system to model a system that allows concurrency and aborts of running

transactions, and uses some (unspecified) concurrency control and recovery mechanism for each data

object. We use a new sort of I/0 automaton called a generic object, which is like the object automaton of

the serial system, but which receives information about the fate of transactions so that it can continue to

respond correctly to invocations of operations. We also use a different controller called a generic

controller, which transmits requests to the appropriate recipient with arbitrary delay, allowing siblings to

run concurrently or to abort after performing some work. A generic system is the result of composing the

transaction automata, generic objects and generic controller.

We define a simple property of generic objects, which we call dynamic atomicity. Dynamic atomic

objects respond to accesses in a way that ensures that the accesses can be serialized in an order that is

determined dynamically as the transactions return. We show that if every generic object in a generic

I

4

system is dynamic atomic, then the sYstem is correct in the sense (first suggete0d in 1LM1) that each

transaction that does not have an aborted ancestor is unable to tell whether it is running in the generic

system or in a corresponding serial system. The proof proceeds by taking a schedule of such a generic

system, choosing a subsequence of operations containing the operations or the selected transact ion and All

the operations that could have affected them, and rearranging that subsequence in any order compatible

with a few simple conditions. The resulting sequence is shown to be a schedule of a serial system that

appears the same to the transaction chosen, We also define a property called local-dynamic atomicity,

which implies dynamic atomicity, and is more easily decidable from the schedules of the object involved.

We next provide a simple semantic definition for the key notion of commutativity. This definition in

turn relies on a definitiou of equieffeetive schedules to describe schediues that are mobservation ally

indistinguishablem . In order to implement our new locking algorithm, we will assume that for each object

we are given a table listing which operations conflict, and we require that any operations that do not

conflict be commutative.

We formalize our algorithm for conflict-based locking by constructing a Conflict-Baae4 Locking object

W(X) for each basic object X. W(X) maintains lock tables and information about previous operations. and

delays responding to invocations until the locking rules permit the required locks to bv grapted. We

prove that any Conflict-Sased Lockin object is local-dynwmic atomic. Thus a generic system in which

every generic object is a Cofliet-Hapad Locking object is seriall correct. We aso show that the R/W

locking objects of [FLMW], which *se Morn' algorithm for concurrency control, behave just like Conflict-

Based Locking objects for a suitable choice of conflict table, and are thus local-dynamic atomic.

Therefore a generic system where each object is either a R/W locking object or a Conflict-Based Locking

object is serially correct. In particular, the correctness of a system such as Argus, where every object is

implemented uaing Mon' algorithm, follows from the results in this paper.

There have been several other attempts to provide rigorous proofs of the correctness of algorithms for

data management in nested transaction systems. The first was ILy], which presented a model that

successfully handled exclusive locking, but which proved difficult to extend to more complicated problems

such as orphen elimination [Go]. The main deficiencies of this earlier model seem to be the lack of

distinction between inputs and outputs, and the lack of explicit representations for transactions and their

44 interfaces. These deficiencies were remedied in [LM], where the operational model discussed above was

defined; this paper again proved correctness of exclusive locking. Other work following [LMI includes

[HLMWI, [GL], [FLMWJ, and [An]. This paper continues the work of [LM] by presenting and verifying an
algorithm that allows arbitrary types of locks. A different program to study concurrency control in

nested transaction systems has been offered in IBBGLS,BBG], where a major motivation is to analyze

protocols that operate on data at different levels of abstraction, but where recovery is not considered. The

5

argument for the correctness of Moss' algorithm in [BBGJ considers only the locking rules and not the

state maintenance methods, so correctness is proved only in the absence of aborts. Concurrency control

and recovery algorithms are also analyzed in [MGGJ, which is concerned mainly with levels of abstraction.

This paper uses many concepts from ILM], but we have repeated everything needed to make it self-

contained, and indicated where definitions or details differ.

2. I/O Automata
The following is a brief introduction to a model that is described in [LM] and developed at length, with

extensions to express infinite behavior, in ILTI.

All components in our systems, transactions, objects and controllers, will be modelled by I/0 automata.

An I/O automaton A has a set of states, some of which are designated as initial states. It has operations,

each classified as either an input operation or an output operation. Finally, it has a transition relation,

which is a set of triples of the form (s',irs), where s' and s are states, and r is an operation. This triple

means that in state s', the automaton can atomically do operation r and change to state s. An element of

the transition relation is called a step of the automaton. The output operations are intended to model the

actions that are triggered by the automaton itself, while the input operations model the actions that are

triggered by the environment of the automaton.

Given a state s' and an operation 7, we say that ir is enabled in s' if there is a state s for which (s',a,s) is

a step. We require the following condition:

Input Condition: Each input operation r is enabled in each state s'.

This condition says that an I/O automaton must be prepared to receive any input operation at any time.

An ezeeution of A is an finite alternating sequence s0 ,lSIw 2,..., n,s, of states and operations of A,
beginning and ending with a state. Furthermore, so is a start state of A, and each triple (s',r,s) that

occurs as a consecutive subsequence is a step of A. From any execution, we can extract the schedule,

which is the subsequence of the execution consisting of operations only. Because transitions to different

states may have the same operation, different executions may have the same schedule. We say that a

schedule a of A can leave A in state s if there is some execution of A with schedule a and final state s.

We say that an operation 7r is enabled after a schedule a of A if there exists a state s such that a can

leave A in state s and ar is enabled in a. Since the same operation may occur several times in an execution

or schedule, we refer to a single occurrence of an operation as an event.

We describe systems as consisting of interacting components, each of which is an I/O automaton. It is

8

convenient and natural to view systems as I/O automata, also. Thus, we define a composition operation

for I/O automata to yield a new I/O automaton. A set of I/O automata may be composed to create a

system S if the sets of output operations of the various automata are pairwise disjoint. (Thus, every

output operation in S will be triggered by exactly one component.) A state of the composed automaton is

a tuple of states, one for each component, and the start states are tuples consisting of start states of the

components. The operations of the composed automaton are those of the component automata. Thus,

each operation of the composed automaton is an operation of a subset of the set of component automata.

An operation is an output of the composed automaton exactly if it is an output of some component. (The

output operations of a system are intended to be exactly those that are triggered by components of the

system, while the input operations of a system are those that are triggered by the system's environment.)

During an operation ir of a composed automaton, each of the components that has operation ir carries out

the operation, while the remainder stay in the same state.

An execution or schedule of a system is defined to be an execution or schedule of the automaton

composed of the individual automata of the system. If a is a schedule of a system with component A,
then the projection of a on A, denoted by alA, is the subsequence of a containing all the operations of A.

Clearly, al. is a schedule of A.

The following lemma from [LM] expresses formally the idea that an operation is under the control of the

component of which it is an output.
Lemma Is Let a' be a schedule of a system S, and let a = a'ir, where ir is an output

operation of component A. If alA is a schedule of A, then a is a schedule of S.
Proof: Since alA is a schedule of A, there is an execution 0 of A with schedule alA. Let $'

be the execution of A consisting of all but the last step of 8. Similarly, since a' is a schedule
of S, there is an execution -y of S with schedule a'. It is possible that A has an execution in -y
that is different from #', since different executions may have the same schedule. But it is easy
to show, by induction on the length of 1, that there is another execution -y' of S in which
component A has execution #', and which is otherwise identical to -1. The schedule of ,y' is a'.
Since r is not an output operation of any other component, ir is defined from the state reached
at the end of -,', so that a = &'s is a schedule of S. [

We say that automaton A preserves a property P of schedules of A if a = a'r satisfies P whenever a is

a schedule of 4, a' satisfies P and r is an output of A.

3. Serial Systems
In this paper we define two kinds of systems: "serial systems* and "generic systemsm. Serial systems

describe serial execution of transactions. A serial system is defined for the purpose of giving a correctness

condition for other systems, namely that the schedules of another system should look like schedules of the

serial system to the transactions. As with serial exeetitions of single-level transaction systemb. serial

systems are too inefficient to use in practice. Thus, we will define generic systems, which allow

7

transactions to run concurrently or abort after performing some work; these systems use some algorithm

at each object in order to cope with the demands of concurrency control and recovery.

In this section of the paper we define serial systems, which consist of transaction automata and basic

object automata communicating with a serial scheduler. Transactions and basic objects describe user

programs and data, respectively. The serial scheduler controls communication between the other

components, and thereby controls the orders in which the transactions create children or access data. All

the system components are modelled as I/O automata. Most of this section is taken from [LM], with

slight modifications to accomodate minor changes in definitions.

We represent the pattern of transaction nesting by a system type, which is a set of transaction names,

together with extra structure described below. We assume that each possible instantiation of a piece of

program text has its own name. The transaction names are organized into a tree by the mapping

Nparento-, with To as the root. In referring to this tree, which is part of the system type, we use

traditional terminology, such as child, leaf, least common ancestor (Ica), ancestor and descendant. (A

transaction is its own ancestor and descendant.) Thus the children of a transaction name are the names

of all the sub-transactions that might ever be created for it. The leaves of the tree of transaction names

are called accesses. The accesses are partitioned, where each element of the partition contains the

accesses to a particular object. We denote the element of the partition containing the accesses to object X

by accesses(X). The partition, including the names of the objects, is part of the system type.

The system type can be thought of as a predefined naming scheme for all possible transaction

instantiations that might ever be created, indicating for each instantiation the transaction of which it is a

subtransaction, and also indicating (for those transactions that are accesses) the name of the object being

accessed. In any particular execution, however, only some of these transactions will actually take steps.

\Ve assume that the tree structure is known in advance by all components of a system. The tree will, in

general, be an infinite structure with infinite branching.

The root transaction To plays a special role in this theory. The root models the environment of the

nested transaction system (the Nexternal world") from which requests for transactions originate and to

which the results of these transactions are reported. Since it has no parent, To may neither commit nor

abort. The classical transactions of concurrency control theory (without nesting) appear in our model as

the children of T0 . (In other work on nested transactions, such as Argus, the children of To are often

called "top-level" transactions.) Even in the context of classical theory (with no additional nesting) it is

convenient to introduce the root transaction to model the environment in which the rest of the

transaction system runs, with operations that describe the invocation and return of the classical

transactions. It is natural to reason about To in the same way as about all of the other transactions.

0

The only tranasetioe thttatalactees daa -are the, leaves ofitifte'tuanactloi tteei wandthus they are

distinguished as *ateoes'. Th*'iMteftak'nod~s of the, tree model tanations whose fnantion.~s to create

and manage su &tifatation, .but'n6t to aecessd-k dh~deetyt.

We also assuifte that asytm type iaed"ad~sigated set V of tadoes, to be used as return values of

transactions.

A serial system of a given s"tn type is tbe-cowepeitlon-of a set of /O automata. This set contains a

transaction aultotn for, efth intetnalt (i.e. ubrn-lesf, non-access) node of the transaction tree, a basic

object automaton~ for ebeh objeet, atid: a- serial. seheduler. Thesm automata are described below.

Naturally, a practical system -would' not' wishi to have a separate proems pre-excisking! for every possible

instantiation of a piece of code, but; would! rather create proess dynamically as they ame needed. For,
reasoning about the system, though, it is cleaner to model each instantiation separately as a permanent

entity, with an operation to wake it up when it gets OcreatedO.

3.1. Transactions.

This paper difters from othier work such a& [88BG] in that we model the transactions excpficitly. A non-

access transactiott T is modelled asat I/O autbmaton, with the following operations.

Input operations-
CREATE(T)
REPORTCOMMITT,) f14 I a child of T', and v a value-
REPORT_-AB (tT%') fbr T' a child, of T

Output operations:
REQUEST_COREATE(T'), f6r T' a child of T
REQUEST_ COMMIT(T,v), for v a- value

The CREATE input operation "waes up' the transaction. The REQUEST_CREATE output

operation is a request by T to create a particular child transaetiow. The REPORT_-Cohg=F input

operation reports to T the sieedsful, cofmpletion of one of its childme, and returns a value recording the
results of that child's eiteecution. The RPPMOTT_ ABORT input operation reports to T the unsuccessful

completion of one df itt children, 'without returning any other information. We caln
REPORT_-COMMIt(T',v), for any v, anid REPORT_-ABORT(T') report operations for transaction T'.
The REQUESTCOAMiT boetstiori is an atiouncement by T that it has finished its work, and includes

a value recording tht reenite of that wotk.

ONote that there Is ho ptoilsion ror T tao pas itltmatlott to Its child IN this request. In a programming Isagu, T might e
permitted to pass pirimettV v&ies to a snbhtinsetnu Although this may7 he a ooveniehu leseriptive aid, it is not *ecasary to
include it in the uilAbtJi* fotmal model. tifted, We conMidr ttaasactioas that have difiereat ispet parameteft to be different
transactions.

9

It is important to note that we use two separate operations, REQUEST_CREATE and CREATE, to

describe what takes place whets a qubtransaction iq activated. The REQUEST_CREATE is an operation

of the transaction's parent, while the actual CREATE takes place at the subtransaction itself. In actual

systems such as Argus, this separation does occur, and the distinction will be important in our results and

proofs. Similarly, we distinguish between a subtransaction's REQUESTCOMMIT, the actual COMMIT

(which is internal to the controllr - see Section 3.3), and the REPORTCOMMIT operation of the

parent transaction.
7

We leave the details of particular transaction automata largely unspecified; in each system the choice of

an automaton, that is the choice of which children to create, and what value to return, will depend on the

particular piece of user code being modeled. For the purposes of the controllers studied here, the

transactions (and in large part, the objects) are "black boxes.0 Nevertheless, it is convenient to assume

that schedules of transaction automata obey certain syntactic constraints. We therefore require that all

transaction automata preserve well-formedness, as defined in the next paragraph. We do not constrain

how transaction automata behave once well-formedness has been violated, but we will prove later that a

transactions generate only well-formed schedules when placed in any of the systems we consider.

We recursively define8 welt-formedneee for sequences of operations of transaction T. Namely, the empty

schedule is well-formed. Also, if a - a'ir is a sequence of operations of T, where x is a single event, then

a is well-formed provided that a' is well-formed, and the following hold.

a If 7r is CREATE(T), then
(i) there is no CREATE(T) event in a'.

* If r is REPORT_COMMIT(T',v) for a child T' of T, then
(i) REQUEST_ CREATE(T') appears in a' and
(ii) there is no REPORTABORT(T') event in a' and
(iii) there is no REPORT_ COMMIT(T',v') event with v'7&v in a'.

* If x is REPORTABORT(T') for a child T' of T, then
(i) REQUESTCREATE(T') appears in a' and
(ii) there is no REPORTCOMMIT event for T' in a'.

a If r is REQUEST_ CREATE(T') for a child T' of T, then
(i) there is no REQUEST_ CREATE(T') event in a' and
(ii) there is no REQUESTCOMMIT event for T in a' and

7Note that we do not include a REQUEST_ABORT operation for a trasaction: we do not model the situation in which a
transaction decides that its own existence is a mistake. Rather, we asign decision to abort transactions to another component of
the system, the controller. In practice, the controller must have some power to decide to abort transactions, as when it detects
deadlocks or failures. In Argus, transactios arn permitted to request to abort; we regard this request simply as a shint" to the
controller, to restrict its allowable executions in a particular way.

-This definition i more restrictive than that in ILMI, where a REQUIESTCOMMIT was allowed whenever the transaction had
been created and had not requested to commit.

10

(iii) CREATE(T) appears in a'.

If r is RiQUEST_COMMIT(T,v) for a value v, then
(i) there is no REQUEST _COMMIT event for T in a' and

(ii) CREATE(T) appears in or' and
(iii) there is a report event in a' for every child of T for which there is a
REQUEST_CREATE event in a'.

These restrictions are very baski; they simply say that a transaction does- not get created more than

once, does not receive conflicting information, about the fates of its children, and does not receive

information about the fate of any chil whos creation it has not requested,; also, a transaction does not

perform any output operations before it has been created or after it has requested to commit, it does not

request the creation of* the same child more then once, and it. dew, not request to commit until it has

received information about the fat& of every child whose creation it requsted. Except for these minimal

conditions, there are no a priori restrictions on allowable transaction behavior.

The following easy lemma summarizes the properties of well-formed sequences of transaction operations.

Lemma 2s Let a be a well-formed sequence of operations of transaction T. Then the
following conditions hold.

1. The first event in a isa CREATE(T) event, and there are no other CREATKE events.
2. There is at most one REQUEST_CREATE(T') event in a for each child T' of T.
3. There are not' two diftent, report- operations in a for any child T' of T. (However,

there may be several vent that are repeated instances of a,sinle-report opeation),
4. Any report event for a child T' oftT is preceded by REQUEST CREATE(T') in a.
5. It a REQUEST_COMMIT event for T occurs in a, then there ae no later

REQUWT_ C R ATE o rEQUEST _CO MM eventa of T in a
0. If a REQUESTCOMMIT event for T occurs in o, then it is preceded, by a mport

event for each child of T whoms creation is requested in a.
Conversely, amy sequence of epewav m oP 7 satisIing these conditions is weM..brtmred

3.2. Basic Objects

Recall that 1/O automata are associated with non-access transactions only. Since access transactions

model abstract operations on shared data objects, we associate a single I/0 automaton with each object,

rather than one for each access. The operations for each object are just the CREATE and

REQUEST COMMIT operations for all the corresponding access transactions. Although we give these

operations the same sorts of names as the operations of non-access transactions, it is helpful to think of

the operations of access transactions in other terms also: a CREATE corresponds to an invocation of an

operation on the object, while a REQUESTCOMMIT corresponds to a response by the object to an

invocation. One should notice though that these CREATE and REQUEST_COMMIT operations carry

with them a designation of the position of the access in the transaction tree. Thus, a basic obpge X is

modelled as an automaton, with the following operations.

Input operations:

CREATE(T), for T an access to X
Output operations:

REQUEST_COMMIT(T,v), for T an access to X

Our model differs significantly from other common models used to reason about data, in that we do not
insist that the object have a value (of the type returned by a read operation) at all times. We do not
specify any particular relationship between the internal state of the object automaton and the values

returned by accesses, and it is only the values returned that matter to transactions in the system.

As with transactions, while specific objects are left largely unspecified, it is convenient to require that
schedules of basic objects satisfy certain syntactic conditions. Thus each basic object is required to

preserve well-formedness, as defined below.

Let a be a sequence of events of a basic object. Then an access T to X is said to be pending in a
provided that a contains CREATE(T) but no REQUEST_COMMIT event for T. We recursively define
well-formedness for sequences of operations of basic objects. Namely, the empty schedule is well-formed.
Also, if a = a'w is a sequence of operations of basic object X, where ir is a single event, then a is well-
formed provided that a' is well-formed, and the following hold.

" If ir is CREATE(T), then
(i) there is no CREATE(T) event in a', and
(ii) there are no pending accesses in a'.

" If v is REQUEST_COMMIT(T,v) for a value v, then
(i) there is no REQUESTCOMMIT event for T in a', and
(ii) CREATE(T) appears in a9.

These restrictions simply say that the same access does not get created more than once, nor does the
creation of a new access occur before any previous access has completed (i.e. requested to commit); also, a

basic object does not respond more than once to any access, and only responds to accesses that have

previously been created.

The following easy lemma summarizes the properties of well-formed sequences of basic object

operations.
Lemma 8: Let a be a well-formed sequence of operations of basic object X. If a contains an

even number of events, then a is the concatenation of a sequence of pairs
CREATE(T.)REQUESTCOMMIT(Ti,vi), with Ti V T when i 7 j. If a contains an odd
number of operations, then a is the concatenation of a sequence of pairs
CREATE(T)REQUESTCOMMIT(T,vi) followed by a single CREATE(T'), with Ti 7A T
when i VA j, and T' 74 Ti. Conversely any sequence a of operations of X that satisfies either of
these descriptions is well-formed.

We will often have occasion to refer to a pair of operations CREATE(T)REQUEST_COMMIT(T,v).

14

REPORTCOMMIT(T,v), T V To

Precondition:
T E s'.committed
(T,v) E s'.commit requese

The input operations, REQUEST CREATE and REQUESTCOMMIT, simply result in the request

being recorded. A CREATE operation can occur only if a corresponding REQUESTCREATE ha.
occurred and the CREATE has not already occurred. The second precondition on the CREAT

operation says that the serial scheduler does not create a transaction until all its previously created sibling

transactions have returned. That is, siblings are run sequentially. The preconditions on the ABORT

operation say that the serial scheduler does not abort a transaction while any of its siblings are active or

if the transaction has already been created. That is, aborted transactions take no steps and are dealt

with sequentially with respect to their siblings. The result of a transaction can be reported to its parent

at any time after the (purely internal) commit or abort has occurred. In particular, siblings might run in

one order and be reported to their parent in some other order.9

The next lemma relates a schedule of the serial scheduler to the state that results hem applying that

schedule.

Lemma 4: Let a be a schedule of the serial scheduler, and let s be a state that can reslt
from applyilig a to the inikial state. Then the folIkwing eonditiem awe true.

1. T is in s.create -rqweted eractly if T To or a contaim a REQUEST (RATE(T)
event.

2. T is in s.created exactly if a contains a CREATE(T) event.
3. (T,v) is in s.eommitrequesd exactly if a contaims a REQUEST_ CXDJdTT,v)

event.
4. T is in s.committed exactly if a contains a COMMIT(T) event.
5. T is in s.aborted exactly if a contains an ABORT(T) event.
6. s.returned = s.committed U s.aborted.
7. s.committed f s.aborted = 0.

3.4. Serial Systems and Serial Schedules

The composition of transactions with basic objects and the serial scheduler for a given system type is

called a serial system, and its operations and schedules are called serial operations and serial schedules,

respectively. We note that every serial operation is an operation of the serial scheduler and of at most

one other component of the serial system. A sequence a of serial operations is said to be wel-formed

provided that its projection at every transaction and basic object is well-formed.

90ne significant dilferenee between or srlal sehetuler and the one in ILMI i that these the return operatioe and $be report tw

the Parent of the return gre oombiwed a a single operation, giving th parent the extra information of the order in wuwleh Itz children
are run. Another differenc-e is that In JLWtJ the eritl scheduler prevented a transaetion from eommlting unles evef child whose
creation was requested had returned, since in that paper the transactions were not required to enforce this themuelvee.

15

If a is a sequence of operations and T is a transaction such that a contains CREATE(T) but no return

event for T, we say that T is live in a. The following are useful observations:
Lemma 5: Let a be a well-formed serial schedule, T a transaction live in a and T' an

ancestor of T. Then T' is live in a.

Lemma 8: Let a be a well-formed serial schedule, and T and T' distinct sibling
transactions. If T is live in a, then T' is not live in a.

A consequence of the two previous lemmas is the following, which states that transactions can be live

concurrently in a well-formed serial schedule only if one is an ancestor of the other.

Lemma 7: Let a be a well-formed serial schedule, and T and T' transactions each of which
is live in a. Then either T is an ancestor of T' or T' is an ancestor of T.

We now show that all serial schedules are well-formed. Afterwards, we will use this fact repeatedly,

without explicitly noting it or referencing this lemma.
Lemma 8: Let a be a serial schedule. Then a is well-formed.
Proofs By induction on the length of schedules. The base, length = 0, is trivial. Suppose

that air is a serial schedule, and assume that a is well-formed. If r is an output of a basic
object or non-access transaction P, then airiP is well-formed because P preserves well-
formedness, and so air is well-formed. So assume that r is an output operation of the serial
scheduler. If ir is a return operation for a transaction, it is not an operation of any basic
object or non-access transaction automata, so air is well-formed, since arlP=aP for all basic
object or non-access transaction automata P. The remaining cases are when ir is an input
operation of some basic object or non-access transaction automaton P. It suffices, in each case,
to show that airiP is well-formed.

(1) r is CREATE(T) for some non-access transaction T.
The serial scheduler preconditions and Lemma 4 ensure that CREATE(T) does not appear in
a.

(2) a is CREATE(T) for some access T to basic object X.
The serial scheduler preconditions and Lemma 4 ensure that CREATE(T) does not appear in
a. Well-formedness of o at X implies therefore that a does not contain a
REQUESTCOMMIT event for T, and thus that T is pending in a. By Lemma 7 we deduce
that no transactions except ancestors of T are live in a, and in particular, no other access to X
is live in a. Any pending access T' in a must be live, as a cannot contain a COMMIT event
for T' without also containing a REQUEST_COMMIT event for T', and a cannot contain an
ABORT event for T as well as a CREATE event for T'. Thus no access to X other than T is
pending in a.

(3) x is REPORT_ COMMIT(T,v) for some transaction T and value v.
Then r is an input to transaction parent(T) - T'. The serial scheduler preconditions and
Lemma 4 imply that a contains REQUESTCOMMIT(T,v). Well-formedness of a at the
non-access transaction T (or at basic object X, if T is an access to X) implies that a contains
CREATE(T), and the serial scheduler preconditions and Lemma 4 then require that a contains
REQUEST CREATE(T). Also, serial scheduler preconditions and Lemma 4 imply that
COMMIT(T) occurs in a, and thus no ABORT(T) occurs in a. Thus no
REPORTABORT(T) occurs in a, by the serial scheduler preconditions. Well-formedness at
T (or at X, if T is an access to X) implies that no REQUESTCOMMIT(T,v') with v' 7 v
occurs in a, and therefore by the serial scheduler preconditions, no REPORTCOMMIT(T,v')

16

with v' 9 v occurs in a.

(4) w is REPORT_ABORT(T) for some transaction T.
Then r is an input to transaction parent(T) = T'. The serial scheduler preconditions and
Lemma 4 imply that a contins ABORT(T) and hence contains REQUEST OREATE(T) but
no CREATE(T). The analysis above shows that this is incompatible -with the pressnue of any
REPORTCOMMIT eventfor T. 13

3.6. Visibility

In order to talk about schedules, we introduce some terms to describe the 'fate of trsassetiom. Let a be

any sequence of operations. (We will use these same terms later for schedules of generic systems, so we

make the definitions for general sequences.) If T is a transaction and T' an ancestor of T, we say that T

is committed to T' in a if COMMIT(U) occurs in a for every U that is an ancestor of T and a proper

descendant of T'. If T and T' are transactions we say that T is t.bl/e to T' in a if T is committed to

Ica(T,T').

We also introduce two terms that describe different relationships between events mad tnsaections. We

will always associate am operatice of a on-acess transaction automaton wia that trrnmatien. The retwm

operation for a transaction (which oces only at the controller) wil sometimes weed to be associated with

the transaction, and semetimes with the parent of the traasactien. If s is one of the aperwtians

CREATE(T), REQUEST CREAT T'), REPORT-OoMMIrT(T',v'), REPORTAIM T(T',v'),

REQUEST_COO4IT(T,v), COMMIT(T), or ABORT(T), where T' is a chid of T, we say that w

mentions T. Thus if T is a non-seaes trmsaction then the operations that mention T am the operations

of the automaton T together with the return operations for T. If x is one of the operatios CREATE(T),

REQUEST_ CRFATE(T'), O MMIT(T'), ABORT(T'), REPORT_ M0MT)'Tv'),

REPORTABORT(T',v'), or REQUFST_COMMIT(T,v), where T' is a child of T, then we define

traneaction(w) to be T. If T is a non-seem transaction then the operations jr with traasaction(ir) - T are

the operations of the automaton T together with the return operations for children of T. We denote by
visible(a,T) the subsequence of a consisting of events jr with transaction(r) visible to T in a. Notice that

every operation occurring in visible(a,T) is a serial operation, even if a itself contains other operations.

We collect here some straightforward consequences of these definitions:

Lemma Is Let a be a sequence of operations, and T, T' and T" transactions.
I. If T is an ancestor of T', then T is visible to T' in a.
2. T' is visible to T in a if and only if T' is visible to lca(T,I") in a.
3. If T" is visible to T' in a and T' is visible to T in a, then T" is visible to T in a.
4. If T' is a proper descendant of T, T" is visible to T' in a, but T" is not visible to T in

a, then T" is a descendant of the child of T that is an ancestor of T'.
Lemma 10 Let a and 0 be sequences of operations such that 0 consists of a subset of the

events of a.
1. If transaction T is visible to transaction T' in 0, then T is visible to T' in a.

17

2. If event r is in visible(#,T), then a is in visible(a,T).

Lemma Its Let a be a sequence of oprations, and let T and T' be transactions. Then
visible(a,T)IT' is equal to aIT' if T' is visible to T in a, and is equal to the empty sequence
otherwise.

Lemma 12: Let a be a sequence of operations. Let T, T' and T" be transactions such that
T" is visible to T' and to T in a. Then T" is visible to T' in visible(a,T).

Lemma 13: Let T be a transaction, and let air be a sequence of operations, where r is a
single event.

1. If transaction(r) is not visible to T in air, then visible(air,T) = visible(a,T).
2. If transaction(=) is visible to T in air and if ir is not a COMMIT event, then

visible(air,T) = visible(a,T)x.
3. If transaction(r) is visible to T in air, and sr is COMMIT(U) then the events in

visible(ax,,T) are those visible in a to either T or U, together with ir itself.

Let a be any sequence of operations. If T is a transaction we say T is an orphan in a if ABORT(U)

occurs in a for some ancestor U of T. The following lemmas are straightforward.

Lemma 14s Let a and 8 be sequences of operations such that # consists of a subset of the
events in a. If a transaction T is not an orphan in a then T is not an orphan in f.

Lemma 15s Let a is a sequence of operations. If T is a transaction that is not an orphan in
a and T' is an ancestor of T, then T' is not an orphan in a.

3.8. Serlal Comeetnesa

We use serial schedules as the basis of our correctness definition, which was first given in ELMI.
Namely, we say that a sequence of operations is serially correct for a transaction T provided that its

projection on T is identical to the projection on T of some serial schedule. That is, the sequence "looks

like* a serial schedule to T. Later in this paper we will define "Conflict-Based Locking systems" and show

that their schedules are serially correct for every non-orphan transaction, and in particular that these

schedules are serially correct for the root transaction TO.

Motivation for our use of serial schedules to define correctness derives from the simple behavior of the

serial scheduler, which determines the sequence of interactions between the transactions and objects. We

believe the depth-first traversal of the transaction tree to be a natural notion of correctness that

corresponds precisely to the intuition of how nested transaction systems ought to behave. Furthermore, it

is a natural generalization of serializability, the correctness condition generally chosen for classical

transaction systems. Serial correctness for T is a condition that guarantees to implementors of T that

their code will encounter only situations that can arise in serial executions. Correctness for TO is a special

case that guarantees that the external world will encounter only situations that can arise in serial

executions.

It would be best if every transaction (whether an orphan or not) saw data consistent with a serial

execution. Ensuring this requires a much more intricate controller than the simple generic systems we

18

describe below. In IHLMWJ, several algorithms for maintaining correctness for orphan tramactions are

described and verified.

Our approach is an example of a general technique for studying system algorithms. A simple, intuitive
but inefficient or impractical algorithm (automaton) is used to specify an acceptable collection of
schedules for the system compeaet. The actual system component is more efficient or robust, but

provides the same user interface. The user is guaranteed that applications (transactions, in our work)
that work well when run with the simple algorithm will work the same way when run with the actual

system.

4. Generic Systems
The serial systems described in the previous section have a restrictive controller (the serial scheduler)

that makes their behavior easy to reason about, but also makes them a poor choice for implementation.
Practical systems allow activity to procede concurrently in sibling transactions to improve performance,
and therefore need to use complicated algorithms at the objects to ensure that the resulting behavior is
still serially correct. In this section, we introduce a generic system, which is composed of transactions (just
like a serial system), generic objects (each of which receives information about commits and aborts of
transactions, and uses an as yet unspecified concurrency control algorithm), and a generk controller
(which allows concurrency and aborts of running transactions). In Theorem 32, we will give a simple
condition on the generic objects that ensures that the generic system is serially correct.

4.1. Generic Objects

For each object X in the system type, a generic system must include a generic object waomaton. The
operations of a generic object X are:

Input operations:
CREATE(T), T an access to X
INFORM_ COMMIT AT(X)OF(T)
INFORM_ ABORT AT(X)OF(T)

Output operations:
REQUEST COMMIT(T,v), T an access to X

We give a recursive definition for wdl-formedness of schedules of generic object X. Namely, the empty
schedule is well-formed. Also, if a - a'r is a sequence of events of generic object X, then a is well-
formed provided that a' is well-formed and the following hold.

e If n is CREATE(T), then
(i) there is no CREATE(T) in a'.

* If ir is a REQUESTCOMMIT for T, then
(i) there is no REQUESTCOMMIT for T in a', and

19

(ii) CREATE(T) occurs in a'.

* If r is INFORMCOMMITAT(X)OF(T), then
(i) there is no INFORMABORTAT(X)OF(T) in a', and
(ii) if T is an access to X, then a REQUESTCOMMIT for T occurs in a'.

" If w is INFORMABORTAT(X)OF(T), then
(i) there is no INFORMCOMMITAT(X)OF(T) in a'.

Generic objects are required to preserve well-formedness.

Each generic object represents a data item, together with the concurrency control and recovery

algorithms used to maintain it. Thus our model is particularly convenient for representing systems in
which different data items are maintained with different concurrency control algorithms, as can easily

happen in a distributed database formed by combining pre-existing databases. It is well known that

different correct algorithms cannot always be combined. For example, a system, in which some data items
are maintained with timestamps and others use two-phase locking, may not guarantee serializability. In
this paper we will introduce a property called dynamic atomicity. We will show that so long as every
generic object in the system is dynamic atomic, then the whole system generates serially correct schedules.

4.2. Generic Controller

The generic controller is a nondeterministic automaton. It passes requests for the creation of sub-
transactions or accesses to the appropriate recipient, passes responses back to the caller and informs

objects of the fate of transactions, but it may delay such messages for arbitrary lengths of time or
unilaterally decide to abort a subtransaction that has been created. Moss [Mol devotes considerable effort

to describing a distributed implementation of the controller that copes with communication failures and
loss of system information due to crashes, yet still commits a subtransaction whenever possible. These

concerns are orthogonal to the correctness of the data management algorithms and we do not address

them here. 10 We use nondeterminism in the generic controller so that our results will apply to many

different controllers, each implementing the generic controller by exhibiting a subset of the behaviors

permitted by the nondeterminism.

The generic controller has the following operations:

Input operations:
REQUEST_CREATE(T)
REQUEST_ COMMIT(T,v)

Output operations:

lOThe gemeric controler Is similar to the weak concurrent controller of ILMI. it differs slightly in the names of ita operations, in

the separation of return and report operations, and in the conditions under which CREATE and COMMIT operations are permitted
to occur.

CREATE(r)t

ABORT(T), T 76T9

REPORT_-ABOfRr(7),. T pA To
INFORM_-CObEMT -ATPCWM.) Ir A T,
INFORMAD0OTAT(PQ),M, T I T

These play theusome roe as is %e nasW whdli , wiath headdiionof the IN7OiJ4_COMMIT and

INFORMABORT! opeibioew, ubick powa isteematioa about the Wae of tranactions to the generic

objects.

Eath state a of the gmeri eenavftw cessiet. of six swo.: .e&e_veqpast~d, s.created

s.commit _requested, aseonmitted,. sabeeted aad a~retuvae4. The, se. s.oenmmit_requeste is a set of

(transaction,value) pars, ad the esbos. wre set of transactions. All weo empty int the initial state except

for create _requested, which is (TO).

The operations are defind by pro and poeaeoeditiam. s follows:

REQUEST_ CREATE(T)
Postcondition:

s.create_ requested - s'.ejuevte_roq@Med U IT)

REQUEST_- COMMIT(T,v)
Postcondition:

s-couimit-requested - a'.eouamitreq*ested U {(T,v))

CREATE(T), T a transaction
Precondition:

T E a' create_ requested - s' .created
Postcondition:

s.created = &'.created U IT)

COMMIT(T), T 76T
Precondition:

(T,v) E s'.cominit_ requested for some v
T 0 9'.returaed

Postcondition:
scommitted = a'.committed U IT)
s.returned - s'.returned Ui IT)

ABORT(T), T y&T
Precondition:

T E s'.create-requested - s'.returaed
Postcondition:

saborted s'.aborted u {T)
s.returned setwrned U (7)

21

REPORT_ COMMIT(T,v), T -/- To

Precondition:
T E s'.committed
(T,v) E s'.commitrequested

REPORTABORT(T), T - To

Precondition:
T E s'.aborted

INFORM_ COMMIT AT(X)OF(T), T y To

Precondition:
T E s'.committed

INFORMABORT_AT(X)OF(T), T 7 To

Precondition:
T E s'.aborted

Lemma 16: Let a be a schedule of the generic controller, and let s be the state that results

from applying a to the initial state so. Then the following conditions are true.

1. T is in s.create _requested exactly if T = TO or a contains a REQUESTCREATE(T)
event.

2. T is in s.created exactly if a contains a CREATE(T) event.

3. (T,v) is in s.commit..requested exactly if a contains a REQUEST_ COMMIT(T,v)
event.

4. T is in s.aborted exactly if a contains an ABORT(T) event.

5. T is in s.committed exactly if a contains a COMMIT(T) event.

6. s.returned = s.committed U s.aborted.

7. s.committed fl s.aborted = 0.

An obvious but important property of the generic controller is given by the next lemma.

Lemma 17s If a is a schedule of the generic controller then a contains at most one return
event for each transaction T.

4.$. Generic Systems

A generic system is the composition of non-access transaction automata, generic object automata, and

the generic controller automaton. The operations of a generic system are called generic operations, and a

schedule of a generic system is called a generic schedule. A sequence of generic events is called

well-formed provided that its projection at each non-access transaction and generic object is well-formed.

We collect here some straight-forward properties of generic schedules.

Lemma 18 Let a be a generic schedule. Then a is well-formed.

22

Lemma IS: Let a be a generic schedule, and T a transaction that is not an orphan in a. If
T' is visible to T in a, then T' is not an orphan in a.

Lemma 29: Let a be a generic schedule, and T a transaction that is live and not an orphan
in a. Then the ancestors of T are all live in a.

5. Reordering Events: Return Order and the Affects Order
The correctness condition we seek to demonstrate requires non-orphan transactions to see serial

schedules; given a generic schedule a and a non-orphan transaction T, we wish to prove that alT = #IT
for some serial schedule P. To f'id R, our strategy will be to extract from a the subsequence visible(a,T),

which contains all the operations of T, and then reorder the events in visible(a,T) to form the new

sequence #, which we argue is a serial schedule and looks to T exactly like a provided the generic objects

all obey a simple condition.

Serial schedules are characterized by the depth-first order in which the serial scheduler runs

transactions. This depth-first order can be characterized by ordering each set of siblings. Below, we

define such an ordering to be a "sibling order,O &ad focus attention on the sibling order induced by the

order of return events in the generic schedule a. As we will see, this is the order in which locking

protocols serialize transactions. We use the return order on siblings to induce a partial order

"returnE(a)" on the events of a. When we reorder the events of visible(a,T) to produce $, we will use

the return order so that the transactions take steps in # in an appropriate depth-first order (as they must

if 8 is to be a serial schedule).

When we are trying to produce a serial schedule by reordering the operations of visible(a,T), we must

be careful not to introduce absurdities, such as moving a CREATE event before the corresponding

REQUESTCREATE. We introduce a relation on the events in a, "affectsE(a)6 , which records the

possible causal relation between different events.

Two relations R and S are consistent if their union can be extended to an irreflexive partial order.

(That is, their union has no cycles.) In this section of the paper, we show that returnE(a) and affectsE(a)

are consistent orderings on the events of a. We use an extension of the union of these orders when

reordering visible(a,T) to form 0. We will argue in the next section of the paper that if the generic

objects obey a simple condition called dynamic atomicity, then the reordered sequence 6 is a schedule of

the serial system. Later we will show that objects implemented using our Conflict-Based Locking

algorithm or Moss' Read/Write Locking algorithm are dynamic atomic.

I

23

5.1. Return Order

Let SIB be the (irreflexive) sibling relation ninong transactions, so (T,T') E SIB if and nnly if T T'

and parent(T)=parent(T'). If R C SIB is a strict partial order (i.e. a relation that is transitive,

irreflexive and anti-symmetric) then we call R a sibling order. If a is a sequence of events, then we define

return(a) to be the binary relation on transactions containing (T,T') exactly if T and T' are siblings and

one of the following holds.

" There are return events for both T and T' in a, and a return event for T precedes a return
event for T'.

" There is a return event for T in a, but there is no return event for T' in a.

Lemma 21: Let a be a generic schedule. Then return(a) is a sibling order.

We will now use the return order on siblings to induce return orders on transactions, events and deeds.

The partial order on events will be the one we use in reordering visible(a,T) to give a serial schedule. If a

is a sequence of events, we define returnT(o) to be the binary relation on transactions containing (T,T')

exactly when there exist siblings U and U' such that T and T' are descendants of U and U', respectively,

and (U,U') E return(a). We also define returnE(a) to be the binary relation on the events of a containing

(O,ir) exactly when 4 and 7r are distinct events of a mentioning transactions T and T' respectively, such

that (T,T') E returnT(a). Similarly, we define returnD(a) to be the binary relation on deeds containing

((T,t)(T',t')) exactly when a contains events ir and 0, such that r-=REQUESTCOMMIT(T,t),

0,11EQUEST_COMMIT(T',t'), and (ir,4,) E returnE(a). Clearly, each of these derived relations is a

strict partial order.
Lemma 22: Let a be a generic schedule. Then returnT(a) is a strict partial order on

transactions, returnE(a) is a strict partial order on the set of events of a, and returnD(a) is a
strict partial order on deeds.

Lemma 23t Let a be a generic schedule. Let r and ir' be events of a mentioning
transactions T and T' respectively. Let 10 and 0' be events of a mentioning transactions U and
U' respectively, where U is a descendant of T and U' is a descendant of T'. If (ir,ir') E
returnE(a) then (4,4') E returnE(a).

5.2. Affects Order

We now define another partial order affectsE(a) on the events of a. This will record those facts about

the neccessary order of events that must be enforced by the preconditions of the serial scheduler. For a

sequence a of events, and events 4 and if in a, we say that 4, directly affects ir in a (and that (0,7r) E

directly-affectsE(a)) if at least one of the following is true.

* 4 and if are distinct events of the same transaction (including accesses)and 4, precedes ir in a

* 4, REQUESTCREATE(T) and if - CREATE(T)

* 0 - REQUESTCOMMIT(T,v) and r = COMMIT(T)

24

* 4 -- REQUESTCREATE(T) and r w ABORT(T)

* , = COMMIT(T) and r - REPORT COMMIT(T,v)

* , = ABORT(T) and r = REPORT_ABORT(T)

Examining the definition of the serial scheduler, we see that (O,) E directly-affectsE(a) either when the

preconditions of ir as an operation of the serial scheduler include a test for a previous occurrence of 0, in

which case a sequence of operations with ir not preceded by 0 could not possibly be a serial schedule, or

when 7r and 4, are operations of the same transaction, in which case we might risk introducing an

absurdity if ir was not preceded by 4, as we assume very little about the transaction automata. Since the

generic controller preconditions also test for the presence of a preceding operation in each case and do not

allow repeated instances of REQUEST_CREATE, RE-,QUEST_COMMIT, or return operations, it is

clear that if a is a generic schedule, then (0,r) E directly-affectsE(a) only if 4 precedes if in a.

For a sequence a of events, define the relation affectsE(a) to be the transitive closure of the relation

directly-affectsE(a). If the pair (4,,ir) is in the relation affectsE(a), we also say that 4, affects ir in a.
Lemma 24: Let a be a generic schedule. Theu affectsE(a) is an irreflexive partial order on

the events in a.
Proof: We noted above that 4 directly affects ir in a only if 4 precedes ir in a. Therefore

affects r in a only if 4, precedes r in a. Thus affect.E(a) is irreflexive and antisymiastric.
Since affectsE(a) is constructed as a transitive closure, the result follows. [

We now show that, as claimed earlier, the return and affects orders are consistent partial orders on the

set of events of a generic schedule. We begin with two lemmas.

Lemma 25: Let a be a generic schedule such that 0, directly affects r in a, where 4,
mentions T and r mentions T'. Then T = T', T = parent(T') or T' - parent(T).

Lemma 28: Let a be a generic schedule. Let r and r' be distinct events in a mentioning
transactions T and T' respectively. If T is neither an ancestor nor a descendant of T', and
(ir,lr') E affectsE(a), then (if,u') E returnE(a).

Proof: If T is neither an ancestor nor a descendant of T', there must be siblings U and U'
such that T is a descendant of U, and T' is a descendant of U'. Let U" denote
parent(U)=parent(U')=lca(T,T'). Since ir affects ir' in a, there must be a subsequence
U--l...-r aof a such that I-=r and rna=f r', and where each ri directly affects ir1+ 1 .

By Lemma 25, by replacing each event in o with the transaction it mentions, a corresponds
to a path through the transaction tree, beginning at T and ending at T', where each link
iri7ri+1 is either a self-loop, goes from child to parent or from parent to child.

Clearly, there must be some step r if+, from U to U", and a later step j +1 from U" to U'.
Examining the definition of directly _affectis, we have that if. is a return for U, and ifi+ 1 is a
report for U. Similarly, xf is REQUEST_ CREATE(U') and jj+1 is either CREATE(U') or

ABORT(U'). The controller preconditions and well-formdness imply that any return event
for U' in a must occur after the unique REQUEST_CREATE(U') event. Thus a contains a

25

return event wi for U, and any return event for U' must be preceded by the later event r.

Thus (U,U') E return(a), and therefore (s.r') E returnE(a). 0

Now we will prove that the two partial orders we have defined on the events of a are consistent.

Lemma 27: Let a be a generic schedule. Then returnE(a) and affectsE(a) are consistent

partial orders on the events of a.

Proof: We prove this lemma by contradiction. If returnE(a) and affectsE(a) are not

consistent, then there is a cycle in the relation returnE(a) U affectsE(a), and thus there must

be some shortest cycle. Let ir0 , irl, ... x.n-1 , r.=r0 be such a shortest cycle, where for each

i, (wisri 1) E returnE(a) U affectsE(a). In the following discussion we will use arithmetic

modulo n for subscripts, so that if i-O, wi1 is to be interpreted as ir*-. We note that n>1,

since both returnE(a) and affectsE(a) are irreflexive.

Since the relation returnE(a) is acyclic, there must be at least one index i such that (7riri)

E affectsE(a). Let T and T' be the transactions mentioned by r. and ri+1 respectively. We

divide the discussion into three cases, depending on the relationship between T and T' in the

transaction tree.

If T is an ancestor of T', then consider the pair (ir,1,ir). If this pair is in affectsE(a), then by

the transitivity of the affects relation, (lri- 1,w+1) E affectsE(a). However if (lr i- r) E

returnE(a), then by Lemma 23 (?r.jri'+l) E returnE(a). In either situation, we can find a

shorter cycle in the relation returnE(a) U affectsE(a), by omitting ir.. This contradicts our

assumption, since the cycle chosen was as short as possible.

If T is a descendant of T', we consider the pair (Vi+l,1r+2). If this pair is in affectsE(a), then

by the transitivity of the affects relation, (ri,1+2) : affectsE(a). However if (Xri+1 1 ri+ 2) E
returnE(a), then by Lemma 23 (xi,'ij+2) E returnEa). In either situation, we can find a shorter

cycle in the relation returnE(a) U affectsE(a), by omitting wi+l. This contradicts our

assumption, since the cycle chosen was as short as possible.

Finally, if T is neither an ancestor nor a descendant of T', then by Lemma 26, (s'i,ji+l) is in

returnE(a) as well as in affectsE(a). Now consider the pair (wr.l, 1.). If this pair is in affectsE(a),
then by the transitivity of the affects relation, (r. l,'i) E affectsE(o). However if (r.l,wr) E

returnE(a), then by the transitivity of the return relation (wriX,wi+) E returnE(a). In either

situation, we can find a shorter cycle in the relation returnE(a) U affectsE(a), by omitting ri.

This contradicts our assumption, since the cycle chosen was as short as possible.

In every case we have found a contradiction, thus the assumption that the relation
returnE(o) U affectsE(a) contains a cycle must be wrong. 0

28

5.3. Visibility

Recall that visible(a,T) is the subsequence of a consisting of the events ir such that transaction(r) is

visible to T. We begin our study of the way the return and affects orders relate the events of visible(a,T),

in preparation for the main correctness proof of the next section.

First we show that two transactions mentioned in such a subsequence must be ordered by the return

order, unless one is an ancestor of the other, and that therefore the return order determines the relative

order of many of the events in the subsequence.
Lemma 28: Let a be a generic schedule, and T" any transaction. Let ir and n' be events in

visible(a,T") such that there are transactions T and T' where ir mentions T, X' mentions T',
and T is neither an ancestor nor a descendant of T'. Then either (7r,lr') E returnE(a), or (ir',ir)

E returnE(a).
Proof: Let U and U' be distinct sibling transactions such that T is a descendant of U, and T'

is a descendant of U'. Since U and U' are distinct siblings, T" is not a descendant of both U
and U'. Without loss of generality, we will assume that T" is not a descendant of U. Note that
therefore the least common ancestor of T" and a descendant of U must be an ancestor of
parent(U). Since r mentions T, transaction(ir) must be T or parent(T). Thus transaction(r) is
a descendant of U unless ir is a return event for U itself. Since 7 is visible to T" in a, a must
contain a COMMIT event for every transaction that is an ancestor of transaction(xr) and a
strict descendant of ica(transaction(ir),T"). If transaction(t) is a descendant of U, then a must
therefore contain a. COMMIT(U) event. If transaction(ir) is not a descendant of U, then we
saw that ir itself must be a return event for U. In either case a contains a return event for U,
and so return(a) orders U and U'. Therefore returnT(a) orders T and T'. An immediate
consequence is that returnE(a) orders r and ir'. 0

Lemma 29: Let a be a generic schedule, let T be any transaction and X any object. Then
there is a unique reordering of visible(a,T)IX consistent with returnE(a) U affectsE(a).

Proof: By Lemma 27 the partial orders returnE(a) and affectsE(a) are consistent. This
implies the existence of a reordering of visible(a,T)IX consistent with both. Uniqueness of the
reordering will be proved obee we show that any two events of visible(a,T)IX are ordered by
one of the partial orders. Thus, let r and r' be distinct events of visible(a,T)JX. Let U ad
U', respectively, be the accesses of which r and t' are operations. If U=U', then j and r' are
ordered by affectsE(a). If U 7 U', then, since U and U' are accesses, U is neither an ancestor
nor a descendant of U'. By Lemma 28, returnE(a) orders s and r'. 0

For a a generic schedule, T a transaction and X an object, define eerialize(a,TX) to be the unique

sequence that is a reordering of visible(a,T)IX consistent with returnE(a) U affectsE(a), which exists by

Lemma 29.

A useful observation is the following:
Lemma S0: Let a be a generic schedule, T a transaction that is not an orphan in o, and X

an object. The sequence serialize(a,T,X) is well-formed as a sequence of operations of basic
object X.

Proofs Suppose r is an event of serialize(a,TX). There are two cases to consider: either ir is
CREATE(U) or if is REQUESTCOMMIT(U,u).

27

If r is CREATE(U), then since aIX is a well-formed schedule of generic object X, a contains
only one CREATE(U) event. Thus serialise(a,T,X contains no CREATE(U) event other than
ir. We also need to prove that no access to X is pending in the prefix of serialize(a,T,X)
preceding rt. Thus suppose that U' is an access to X such that CREATE(U') precedes ir in
serialize(a,TX). Then U' 7 U, and since visible(a,T) contains both CREATE(U') and ir, by
Lemma 28 we deduce that (CREATE(U'),it) E returnE(a). Therefore (U',U) E returnT(a).
Thus a contains a return event for some ancestor of U', and since CREATE(U') is visible to T
in a, U' is not an orphan in a. Thus by Lemma 20 a contains a COMMIT(U') event, and
therefore also a REQUESTCOMMIT(U',u') event for some value u'. Since (U',U) E
returnT(a), we deduce that (REQUESTCOMMIT(U',u'),ir) E returnE(a), so that
REQUEST COMMIT(U',u') precedes ir in serialize(a,T,X). Thus U' is not pending in the
prefix of serialize(a,T,X) preceding it.

If w is REQUEST_COMMIT(U,u), then since aIX is a well-formed schedule of generic object
X, a contains CREATE(U) preceding ir, and a contains no REQUESTCOMMIT event for U
other than 7r. Thus (CREATE(U),ir) E affectsE(a) and since CREATE(U) is in visible(a,T),
CREATE(U) precedes ir in serialize(a,TX). Also serialize(a,TX) does not contain a
REQUEST_ COMMIT event for U other than 7r. [3

6. Proving Serial Correctness

8.1. The Serial Correctness Theorem

The following lemma establishes conditions on generic objects that are sufficient to ensure the

correctness of generic systems; i.e. that non-orphans see serial schedules. Actually, the statement and

proof of the lemma establishes a stronger property: from any serial schedule o and non-orphan

transaction T, we explicitly construct a serial schedule 8 that is transaction equivalent to visible(a,T), i.e.

31T'=visible(&,T)IT' for all transactions T'. Note that if T' is visible to T in a, then by Lemma 13
visible(a,T)IT' = aIT'. Thus, the single serial schedule P is a serial schedule that is consistent with the

local schedules of every transaction visible to T.

Lemma 31: Let a be a generic schedule, and let T be any transaction that is not an orphan
in a. Suppose that for each object X, serialize(a,TX) is a schedule of basic object X. Then
there is a serial schedule O such that P and visible(a,T) are transaction-equivalent.

Proof: Note first that by Lemma 29, serialize(o,T,X) is well defined.

By Lemma 27, affectsE(a) U return(a)E is an acyclic relation on the events of a, and hence
on the events of visible(a,T). Then there exist total orderings on the events of visible(a,T)
that extend affectsE(a) U return(a)E. Let 6 be a sequence obtained by reordering visible(a,T)
by such a total ordering. We argue that 8 and visible(a,T) are transaction-equivalent, and
that # is a serial schedule.

First we note that since 8 is a rearrangement of visible(a,T), the events in #IT' are the same
as the events in visible(a,T)IT', for any T'. Suppose ir and 0 are two events of visible(o,T)IT',
and ir precedes 4 in visible(a,T). Then (7r,-0) E directly-affects,(a), and so ir must precede 4 in
/, since the order or event, in # i4 consistent with arfcct..,(u). This shows that
l)T'-visible(a,T)IT'. Thus 0 is transaction-equivalent to visible(a,T).

28

Now we argue that 8 s aserial shedule. The prooby iducio onprefixs of $,with a
trivial basis. Let #'r be a prefix of P with ir a single event, assume that 6' is serial, aMd let a,
be the state of the serial scheduler after 0'. There are six came.

1) ir is an output of a son-accems transaction T'.
Then T' must be visible to T in a, and so by Lemma 13 visible(a,T)IT'-orIT'. We saw above
that ,8 and visible(a,T) are transaction equivalent, so we may deduce that 6T'=aJT'. Thus
#8'irIT' (which is a prefix of #IT') is a prefix of alT', which is a schedule of T'. Thus rrajT' is
a schedule of T'. The result folow by Lemma 1.

2) rf is an output of an access transaction T'.
Let T' be an access to the object X. By assumption, serialize(a,TX) is a schedule of basic
object X, and by construction, O9jX =serialize(a,TX). Since 8'rIX is a prefix of PIX, 1 '*JX is
a schedule of basic object X. The result follows by Lemma 1.

3) ir is CREATE(T')
We must show that ir is enabled as an operation of the serial scheduler in state s'. That is, we
must show that T' E s'.create_requested - (s'.created U s'.aborted) and that siblings(T') nl
5' .created C s'.returned.

By the preconditions of the generic controller and Lemma 16, a REQUEST_-CREATE(T')
event precedes and affects w in a. Since transaction(sa)=T', T' must be visible to T in 0, and
therefore parent(T') is also visible to T in af. Since
transaction(REQUEST_-CREATE(T'))-parent(T'), the event REQUEST_ CREATE(T')
occurs in visible(ct,T) and thus in fl Since the order of events in P is consistent with
affectsE(a), the REQUEST_ CREATE(T') event must precede ar in fi, so by Lemma 4, T' E
s'.create -requested. Since only one CREATE for T' occurs in a, no CREATE(T') occurs in

0so by Lemma 4, T' 0 s'.created. Since by Lemma 19, T' is not an orphan in a, no
ABORT(T') occurs in a. Thus no ABORT(T') occurs in 0', so by Lemma 4 T' it s'.aborted.
This completes the demonstration that T' E s'.create_ requested - (s.created U &'.aborted).

Now suppose T" is a sibling of T' that is in s'.created. Then CREATE(T") occurs in .

Since the order of events in 6 is consistent with returnE(a), and CREATE(T") precedes
CREATF(T') in 0, we cannot have (T',T") E returnT(a). Thus by Lemma 28, return 14a)
contains (T",T'). Thus a contains a return event 0b for V". Now
transaction(o)=parent(T")=-parent(T') is visible to T in at, so vp occurs in 8. Since io is an
event that mentions T", we have (O,a) E returnE(a), and so fi precedes r in P9. Thus a return
event for T" occurs in 86', proving that T" E s'.returned.

4) if is COMMJT(T')
We must show that (T,v) E s'.commit_ requested for some v, and that T' 0 s'.returned.

By the preconditions of the generic controller and Lemma 16, there is a value v so that a
REQUESTCOMT(T',v) precedes and affects ir in a. Since 7r occurs in fi,
transaction(ar)-parent(T') must be visible to T in a. However since CONMT(T') occurs in a,
T' is visible to parent,(T') in a, and so by Lemma 9, T' is visible to T in a. Thus
REQUEST- CONMT(T',v) occurs in visible(a,T), and thus it occurs in fl. Since the order of
events in # is consistent with affects,(a), the REQUEST_ COM.4JT(T',v) event must occur in
9i'. Thus (T,v) E s'.commitrequested.

29

The other condition, T' ! s'.returned, is true because (by Lemma 17) there is only one return
for r in a and hence only one in 8.

3) r is ABORT(T')
We must show that T' E s'.create requested - (s'.created U s'.aborted) and siblings(T') fl
s'.created C s'returned.

By the preconditions for the generic controller and Lemma 16, a REQUESTCREATE(T')
event precedes r and affects ir in a. Since transaction(REQUESTCREATE(T')) =
parent(T') = transaction(ir), the REQUEST_ CREATE(T') event occurs in visible(a,T) and
hence in 8. Since the order of events in # is consistent with affectsE(a), the
REQUEST_ CREATE(T') occurs in 0', so that T' E s'.create requested. Also T' is an orphan
in a, so by Lemma 19, T' is not visible to T in a. Thus CREATE(T') does not occur in
visible(a,T), and so also CREATE(T') does not occur in f. Thus T' ! s'.created. Since by
Lemma 17 there is at most one ABORT(T') in a, there can be no ABORT(T') event in 8'.
Thus by Lemma 4 T' 0 s'.aborted.

Suppose T" is a sibling of T' such that T" E s'.created. By Lemma 4, a CREATE(T") event
occurs in #' preceding ir. Since the order of events in 6 is consistent with returnE(a), and
CREATE(T") precedes ABORT(T') in fl, we cannot have (T',T") E returnT(a). Thus by
Lemma 28, returnT(a) contains (T",T'). Thus a contains a return event for T". Now
transaction(i)=paret(T")=parent(T') is visible to T in a, so ,' occurs in 8. Since 0 is an
event that mentions T", we have (O,ir) E returnE(a), and so 0 precedes r in $. Thus, T" E
s'.returned, as required.

6) ir is a REPORTABORT or REPORTCOMMIT event for T'
By the preconditions of the generic controller and Lemma 16, s is preceded and affected by the
appropriate return event 0 in a. Since transaction(O)-parent(T')=tranaction(r), 0 must
occur in visible(a,T) and hence in #. Since the order of events in # is consistent with
affectsE(a), 0 must occur in 8', and so ir is enabled as an operation of the serial scheduler after
of. 0-

The previous lemma enables us to deduce that a generic schedule a is serially correct for a non-orphan

transaction T if every object satisfies a simple condition that depends on a and T.
Theorem 32: Let a be a generic schedule, and let T be any transaction that is not an

orphan in a. Suppose that for each object X, serialize(a,TX) is a schedule of basic object
X. Then there is a serial schedule 8 such that alT=01T.

6.2. Dynamic Atomlclty

In any practical system, we would hope that all generic schedules would be serially correct for all non-

orphan transactions. Let X be a generic object in generic system S. We say that X is dynamic atomic in

S if for every schedule a of S, and every transaction T that is not an orphan in a, serialise(&,T,X) is a

schedule of basic object X. A generic system S is a dynamic atomic system if every generic object is

dynamic atomic in S.

We thus have the following consequence of Theorem 32:

30

Ckollwy 35: Dynamic atomic sysem are serially correct for every non-orphaa
transaction.

The Conflict-Based Locking objects we will construct in this paper, and the R/W Locking objects that

represent data items implemented using Moss' algorithm, have am even stronger property, because they

ensure serial correctness no matter what choices are made of transaction automata to be used is the

system. We say a generic object X is dynamic atomic if it is dynamic atomic in every generic system (of

the fixed system type) that contains X.

Corollary 84: Let S be a generic system such that every generic object is dynamic stonuic.

Then S is serially correct fbi every non-orphan transaction.

Thus dynamic atomic objecte respon4 to accesses in such a way that the resulting schedules can be

serialized in return order. In fact, the mturn order is not known to the objects, as it is determined

dynamically by the controller, so that a dynamic atomic object must ensure that its responses to accesses

can be serialized in every sibling order which could be the return order, based on the local history of the

object, but given no information about the other components of the system.

6.3. Local Information

The previous section showed that to prove a system serially correct for non-orphan transa tas it is

enough to check that each generic obect is dynamic atomic. For eaAh generic object X, this ia a local

condition because it depenci only on X, but to check it one meust compute serialize(a,T,X) for all

schedules a of all generic systems containing X. In this section we introduce a property that is sufficient

to prove dynamic atomicity, but that is easily checked merely by examining the scheduls of X.

First we introduce some tems that emabi us to, dsecribe indonitioa about the fate of tsru* tiona, sad

about return order, that is available to a generic object given its local history. Let a be a seqpace of

operations of generic object X, T a transaction, sad T' an ancestor of T. We say that T is compitted a(

X to T' in a if a contains an INFORMCOMAITATX)OF(U) for every U that is an ancestor of T

and a proper descendant of T'. I a is a sequence of operations of X and T and T' are any trameactions,

we say that T is v..ibk at X to T' in a if T is eomawitted at X in a to lea(T,T'V We 4dsote by

visible-at-X(*,T) the subsequence of a consisting of events r such that transaction(r) is visible at X to T

in a. We say that T is an orphan at X in a if INFORMABORTAT(X)OF(U) occurs in c for some U

which is an ancestor of T.

We collect here some obvious facts about visibility at X of transactions.

Lemma 31: Let a be a sequence of operations of X and # a subsequence or w. Let T be at
access to X and T' a transaction. If T is visible at X to T' in 0 then T is vi~ible at X to T' int

.

Lemma 83: Let a be a sequence of operations of X, and let T, T' and T" he transactions. If

31

T is visible at X to T' in a, and T' is visible at X to T" in a, then T is visible at X to T" in

a.
Lemma 37: Let a be a well-formed sequence of operations of X, and let T and T' be

transactions. If T is visible at X to T' in a, and T' is not an orphan at X in 0, then T is not

an orphan at X in a.

We will next define a relation on accesses to the generic object X, which reflects some information that

X can deduce about the return order, given its local knowledge of the schedule. Given a sequence a of

operations of generic object X, we define a binary relation return-at-XT (a) on accesses to X, where (U,U')

E return-at-XT(a) exactly when U 7 U', a contains both REQUEST_ COMMIT(U,v) and

REQUEST_COMMIT(U',v') for some values v and v', and U is visible at X to U' in a', where a' is the

longest prefix of a not containing REQUEST_COMMIT(U',v'). The intuition on which this definition is

based, is that the COMMIT operation of any ancestor of U must precede an INFORMCOMMIT for

that tramaction, but the COMMIT for an ancestor of U' must follow the REQUEST_COMMIT for U',

so long as U' is not an orphan. Thus if neither U nor U' are orphans, and an INFORMCOMMIT for

the ancestor of U that is a child of Ica(U,U') precedes the REQUESTCOMMIT for U', then U must be

ordered before U' in the return order. The possibility of orphans leads to the complicated definition given.

We will also consider the induced relations return-at-XE(a) on the events of a, and return-at-XD(a) on

deeds at X. The first is defined by the condition that (4,ir) E return-at-XE(a) if and only if 40 and ir are

events of a mentioning accesses U and U' respectively, and (U,U') E return-at-XT(a). Similarly, we define

the second by ((U,v),(U',v')) E return-at-XD(a) if and only if (0,S) E return-at-XE(o), where

#=REQUEST_COMMIT(U,v) and i-rREQUESTCOMMIT(U',v').

We now show that when a is a well-formed sequence of operations of generic object X, return-at-XT(a)

is a partial order on accesses to X. An immediate consequence of this is that the derived relations on

events and deeds are also partial orders.

Lemma 38: If a is a well-formed sequence of operations of generic object X then
return-at-XT(a) is a partial order on accesses to X.

Proofs First, we note that by definition return-at-XT(a) is irreflexive. Now, since et is well-

formed, if T 7 T' and T is visible at X to T' in a' then a' contains a REQUESTCOMMIT
operation for T. Thus the definition shows that (T,T') E return-at-XT(a) only if

REQUEST_ COMMIT(T,v) precedes REQUEST_COMMIT(T',v') in a. Since a is well-
formed, it contains at most one REQUEST_ COMMIT operation for each access, and therefore
return-at-X4(a) is antisymmetric. Finally, suppose (T,T') E return-at-XT(a) and (T',T") E

return-at-XTW(). Let a' denote the longest prefix of a not containing

REQUEST_ COMMIT(T',v') and let a" denote the longest prefix of a not containing
REQUESTCOMMIT(T",v"). We have seen that REQUESTCOMMIT(T',v') precedes
REQUEST_ COMMIT(T",v") in a, so a' is a prefix of a". Since T is visible at X to T' in a',
T is visible to T' at X in a", and since T' im visible to T" at X in v", w. may apply Le'inm
:0 to deduce thatT is visible to T" at X in na". Thus (T,T") E return-at-XT(a).

Lemma $9t If a is a well-formed sequence of operations of generic object X then

32

return-at-XEOa) is a partial order on the events of a, and retuinsa-XD(a) is a partial order on.
deeds at X.

We say that generic object X is local-dynamic atomic if whenever a is a well-formed schedule of X, "y is

a sequence of input operations such that a-3 is well-formed, T is a transaction that is not an orphan at X

in a-y, and 0 is a reordering of visible-at-X(a3y,T) that is consistent with return-at-XC(a), and that is a

well-formed sequence of operations of basic object X, then 0 is a schedule of basic object X. We note that

return-at-XE(a) is equal to return-at-XE(oya). The intuition behind the definition is that a may not

contain enough information about the fates of transactions to determine which accesses are visible to T,

so we need to consider any sequence -y of input operations that, can bring more information. Then the

sequences # described will include all sequences that are consistent with the global return order, and so

should be considered when proving dynamic atomicity.

We now justify the names introduced above by showing the relationship between each local property

defined above and the corresponding global property.
Lemma 40: Let a be a schedule of a generic system containing generic object X. If

transaction U is an orphan at X in uIX then U is an orphan in a. Similarly ift U is committed
at X to V in aX then U is committed to V in a. Also if U is visible at X to V in X then U
is visible to V in a.

Proofs These are immediate consequences of the controller preconditions, which imply that
any INFORM ABORT _AT(X)OF(T) in a must be preceded by an ABORT(T), and, that any
INFORM_ COMMIT_AT(X)OF(U) is preceded- by COMMIT(U).

Next, we show that for non-orphan transactions, return-at,-XT(aIX) is a subrelation of return.o44
Lemma 41: Let &v be a scheduile of a generic system containing generic object X. If (T,r) E

return-at-XT(alX), and T' is not an orphan in a, then (T,T') E returnT(a).
Proof: By definition of the relation return-at-XT(aJX), aIX coaiss a,

REQUEST_ COMMfT(T',v') event for some value v'. Letting a' denote the longest prefix o
not containig REQUEST_COIffiT(T',v'), the definition also enables us to say that T is
visible at X to T' is &'[X. y Lessm 49, s ihpies that T is visible to T' ia'. Le6 U ad
U' denote the siblings such that T is a descendant of U, and T' is a descendant of U'. Thus a'
contains a COMMIT(U) event. However since a is well-formed, it contains at most one
REQUEST COMMIT event for T', and so a' does not contain a REQUEST_COQIUT
event for T'. By the controller preconditions, a' does not contain a COMMIT(T') event. Since
a is well-formed, a' does contain a CREATE(T') event. Since T' is not an orphan in a, a' does
not contain an ABORT(T') event. Thus T' is live in a'. By Lemma 20, U' must be live in a'.
Since a' contains a return for U, and no return for U', we have that (U,U') E retura(c)
Therefore (T,T') E returnT(a). 13

Of course it follows immediately that if (ir,ir') E return-at-XE(aIX) and v does not mention :a transaction

which is an orphan in a, then (w,*') E return-at-XE(CIX).

Finally we show that local dynamic atomicity is a sufficient condition for dynamic atomicity.
Lemma 42: If X is a generic object that is lucal-d)amic atomiic then X is dynamic atomic.
Proofs Let S be a generic system containing X as generic object. Let a be a schedule of 5,

, I I I f' I 00i

33

and T a transaction that is not an orphan in a. We must prove that serialize(a,T,X) is a
schedule of basic object X. Let -y ,finote a sequence of operations consisting of an

INFORMCOMMITAT(X)OF(U) for each COMMIT(U) that occurs in a. Then a'y is a
schedule of the system S, since each operation in -" is an output of the generic controller which
is enabled by Lemma 16. Thus a-IdX is well-formed. We note that since
INFORM_COMMIT_AT(X)OF(U) occurs in a-yIX if and only if COMMIT(U) occurs in a,
visible-at-X(a-yJX,T) = visible(cz,T)iX. Thus serialize(a,X,T), which is a reordering of
visible(a,T) consistent with returnE(M), is a reordering of visible-at-X((aJX)(-yJX),T) consistent

with return-at-XE(aX). Furthermore serialize(a,T,X) is a well-formed sequence of operations

of basic object X. Because X is local-dynamic atomic, any such reordering must be a schedule
of basic object X. This completes the proof that X is dynamic atomic. 0

7. Semantic Conditions
We will give an algorithm that performs concurrency control and recovery using information about

which locks may not be held simultaneously by different transactions. In order for the algorithm to work

correctly, this information about lock "conflicts" must accurately reflect the behavior of the basic object

involved. That is, we require operations whose locks do not conflict to have the same effect, regardless of

the order in which they occur. To describe this requirement, and to reason about the resulting generic

object, we need to introduce some terms to express facts about the semantics of operations. First, we

define the fundamental concept of "equieffectivenessm of schedules to capture precisely the idea of two

schedules with the same effects. We can then define "commutativity". For our discussion of Read/Write

Locking we also need to define "transparencyu of operations; an operation is said to be transparent if

later accesses to the same object return values that are the same as in the situation where the operation

did not occur.

7.1. Equieffective Schedules

We introduce the concept of equieffective schedules of a basic object X in order to define precisely what

schedules we will regard as nessentiallym the same. Intuitively, these are schedules that leave the

automaton in states that are the same. However, we are really interested in observable behavior, not

states, so it is enough that they be indistinguishable by later operations. Formally, given two well-formed

sequences a and 8 of operations of X, we say that a is equieffective11 to 6 if for every sequence 0 of

operations of X such that both cro and 04 are well-formed, €x4 is a schedule of X if and only if 84 is a

schedule of X. Notice that if neither a nor 3 is a schedule of X, then a is trivially equieffective to 0.

Also, notice that if c is equieffective to 6 and $ is a schedule of X, then a is a schedule of X. In the sense

of semantic theory, equieffective schedules pass the same tests, where a test involves determining if a

given sequence of operations can occur after the sequence being tested. We limit the tests to sequences

I t~lhiei efit,, was first used it, IFI.MWI. The definition or well-rormedness in that paper was different from the one that was

introduced in ILMI and that we ust here, and we warn readers that most or the properties proved in IFLMWI about equieffective
schedules do not hold for this paper.

34

that do not violate well-formedness, for technical reasons, because we have not required the objects to

behave sensibly if the inputs violate well-formedness. Clearly, a is equieffective to 0 if and only if 0 is

equieffective to a and in this case we say that a and 8 are equieffective sequences. We also have an

extension result.

Lemma 43: If a and 0 are equieffective well-formed sequences of operations of X, and 4' is a
sequence of operations of X such that a4, and /60 are well-formed, then ao and $0 are
equieffective.

Proof: This is immediate, since well-formed extensions of a-0 are well-formed extensions of
a. 0

Equieffectiveness is not an equivalence relation, but we do have a restricted transitivity result.

Lemma 44: Let , q and be three well-formed sequences of deeds at X, such that every
deed in V appears in either f or C. If perform() is equieffective to perform("), and perform(q) is
equieffective to perform(t), then perform(f) is equieffective to perform(C).

Proof: Suppose perform() and perform(q) are equieffective, and that perform(/) and
perform(W) are equieffective. In order to prove that perform(t) and perform(C) are equieffective,
we must take any sequence of operations 0 such that perform(t)o and perform(f)f are well-
formed, and show that perform(e)# is a schedule of X if and only if perform(),8 is a schedule.
By the definition of equieffectiveness, and the transitivity of mif and only if", it suffices to
show that perform(q)/3 is well-formed. But by Lemma 3, /s must be either perform(r) or
perform(r)CREATE(T), where the first components of all the deeds in r (and T as well, if
appropriate) are distinct from the first components of all the deeds in C and . By the
condition on q, the first components of all the deeds in r (and T as well, if appropriate) are
distinct from the first components of the deeds in -q. Thus Lemma 3 completes the proof, by
showing that perform(tj)8 is well-formed. U

7.1.1. Commutatlvity

Our definition of commutativity is closely based on the one introduced by Weihl for systems without

nesting [We]. We extend his work slightly by ignoring the actual state of the data object, and considering

only the information about the state that can be determined by later tests.

We say that deeds (T,v) and (T',v') at basic object X commute if for any sequence of deeds f such that

both perform(f(T,v)) and perform(f(T',v')) are well-formed schedules of X, then perform(f(T,vXT',v'))

and perform((T',v')(T,v)) are equieffective well-formed schedules of X. That is, we can consider for any

deed (T,v) the test that determines if a schedule of X can be extended by perform(T,v). Then (T,v) and

(T',v') commute if whenever X passes each test, it passes both in any order, and furthermore, no later test

can determine which order was used.

To illustrate this definition, we will consider an object X representing a bank account. The accesses to

X are of the following kinds:

" balance?: The return value for this access gives the current balance.

* deposit-$a: This increases the balance by $a. The only return value is NIL.

35

* withdraw-$b: This reduces the balance by $b if the result will not be negative. In this case the
return value is OK. If the result of withdrawing would he to cause an overdraft, then the
balance is left unchanged, and the return value is FAIL.

For this object, it is clear that two well-formed schedules that leave the same final balance in the account

are equieffective, since the result of each access depends only on the current balance. Now if T and T' are

accesses of kind deposit-$a and deposi -$b, then the deeds (T,NIL) and (T',NIL) commute. To see this,

suppose perform((T,NIL)) and perform((T',NIL)) are well-formed schedules of X. This implies that is

well-formed and contains no deed with first component T or first component T'. Therefore a =

perform((T,NIL.)(T',NIL)) and j3 = perform((T',NIL)(T,NIL)) are well-formed. Also since perform() is

a schedule of X, so are each of a and 6, since a deposit can always occur. Finally the balance left after

each of a and 0 is $(x+a-b), where $x is the balance after perform(f), so a and 8 are equieffective.

On the other hand, let U and U' be distinct accesses of kind withdraw-$a and withdraw-$b respectively.

Then (U,OK) and (U',FAIL) commute. The reason is that if perform((U,OK)) and perform((U',FAIL))

are both well-formed schedules then we must have a < x < b, where $x is the balance after perform(C).

In this situation both perform(C(U,OK)(U',FAIL)) and perform(C(U',FAL)(U,OK)) are well-formed

schedules of X, which result in a balance of $(x-a), and so are equieffective. However, (U,OK) and

(U',OK) do not commute, since if perform(C) leaves a balance of $x, where max(a,b) < x < a+b, then

perform(C(U,OK)) and perform((U',OK)) are schedules of X, but perform(C(U,OK)(U',OK)) is not a

schedule, since after perform((U,OK)) the balance left is $(x-a), which is not sufficient to cover the

withdrawal of $b.

This example demonstrates a significant feature of the approach to concurrency control that was taken

in [We], and adopted in this paper. We allow the return value of accesses to be considered in determining

commutativity, and thus also when deciding whether the accesses can be allowed to proceed concurrently.

Traditional database management systems have used an architecture where a lock manager first

determines whether an access is to proceed or be delayed, and only later is the response determined. Our

approach models both obtaining locks and choosing a response as preconditions on the operation of giving

the response. In our example, we show that it is acceptable to allow a successful withdrawal to proceed

concurrently with one that fails. By doing so, we obtain concurrency that is unavailable if return values

of accesses are not considered in determining commutativity. However we note that our arguments for

serial correctness in section 8 merely require that non-commuting accesses be prevented from acting

concurrently. They do not require that commuting accesses be allowed to proceed concurrently. Thus our

arguments still prove the correctness of traditional systems, where locks are obtained without regard to

the value that will be returned.

The next lemma shows how the defining property of commutativity carries through to sequences of

deeds.

36

Lemma 45 If and ? we sequencs of deeds at X such that each deed in comuutes with
each deed in e, and f is a sequence of deeds such that both perform(&;) and perform(&) are
well-formed schedules of X, then perform(t) and perform(&) are equieffective well-formed
schedules of X.

7.2. Transpar ney

We say that a deed (T,v) at X is transparent if for any sequence of deeds C such that perform((T,v)) is

a well-formed schedule of X, then perform(J(T,v)) and perform(C) are equieffective well-formed schedules

of X.

We extend the defining property to collections of deeds in the following lemma.

Lemma 48: Let q be a sequence of deeds at X such that perform(q) is a well-formed
schedule of X, and let f be a subsequence of qg, such that every deed in rt-t is transparent. Then
perform(q) and perform(e) are equieffective well-formed schedules of X.

The next lemma shows how transparency is related to commutativity.
Lemma 47s Let (T,v) and (T',v') be transparent deeds at X such that T 9A T'. Then (T,v)

commutes with (T',v').
Proofs Suppose f is a sequence of deeds at X such that perform(((T,v)) and

perform(f(T',v')) are well-formed schedules of X. Therefore no deed in has T or T' as first
component, and all the deeds in C have distinct first components. Therefore
perform(f(T,vXT',v')) and perform(f(T',v')(T,v)) are well-formed sequences of operations of
X. Now perform(f(T,v)) and perform(f) are equieffective, since (T,v) is transparent. Since
perform(f)perform(T',v') is a schedule o X, the definition of equieffectiveness implies that
perform(C(T,v))perform(T',v')-perform(((T,vXT',v')) is also a schedule of X. Similarly the
fact that (T',v') is transparent implies that perform(f(T',v'XT,v)) is a schedule of X. By
Lemma 46, each of perform(f(T,vXT',v')) and perform((T',v'XT,v)) are equieffective to
perform(f). Lemma 44 now shows that they are equieffective to each other, as required. 03

8. Conflict-Based Locking Objects
Given a basic object X and a binary relation CONFLICT on pairs of deeds at X, we construct a generic

object automaton W(X) using conflict-based locking, where CONFLICT is used to determine when locks

conflict. We show that if CONFLICT contains all pairs of non-commuting deeds, then the conflict-based

locking object is dynamic atomic. Note that in many implementations there will be pairs that commute

but are nonetheless in CONFLICT (e.g., in exclusive locking, CONFLICT includes all pairs of deeds at

X!), but this does not invalidate our correctness proof.

W(X) has the following operations.

Input operations:
CREATE(T), for T an access to X
INFORM COMMIT_AT(X)OF(T), T p To

INFORM-ABORT AT(X)OF(T), T 9AT
Output operations:

37

REQUEST_COMMIT(T,v), for T an access to X

A state s of W(X) has components s.create _requested, s.run and s.intentions. Of these,
create_ requested and run are sets of transactions, initially empty, and intentions is a function from

transactions to sequences of deeds at X, initial!y mapping every transaction to the empty sequence A.
When (T,v) is a member of s.intentions(U), we say that U holds a I(,v)-lock. Given a state s and a
transaction T we also define the sequence total(s,T) of deeds by the recursive definition total(s,T0)
s.intentions(T0), total(s,T) = total(s,parent(T))s.intentions(T). Thus perform(total(s,T)) is the sequence

of operations obtained by concatenating the values of intentions along the chain from TO to T, and then
replacing each (U,u) by CREATE(U)REQUEST_COMMIT(U,u); as we will see, when T is an access to X
this records a sequence of operations of basic object X that leads to a state of the basic object which is

used as the rcurrento state when determining the response to T.

The transition relation of W(X) is given by all triples (s',ir,s) satisfying the following pre- and
postconditions, given separately for each 7r. As before, any component of s not mentioned in the

postconditions is the same in s as in s'.

CREATE(T), T an access to X
Postcondition:

s.create requested = s'.create_ requested U {T}

INFORMCOMMIT _AT(X)OF(T), T 4 To
Postcondition:

s.intentions(T) = A
s.intentions(parent(T)) s'.intentions(parent(T))s'.intentions(T)
s.intentions(U) - s'.intentions(U) for U - T, parent(T)

INFORMABORT_AT(X)OF(T), T 3 To

Postcondition:
s.intentions(U) - A, U E descendants(T)
s.intentions(U) = s'.intentions(U), U 0 descendants(T)

REQUEST COMMIT(T,v), T an access to X
Precondition:

T E s'.create requested - s'.run
for every U such that U 0 ancestors(T), and every (T',v') in s'.intentions(U):

((T,v),(T',v')) 0 CONFLICT
perform(total(s',T)(T,v)) is a schedule of basic object X

Postcondition:
s.run = s'.run U {T)
s.intentions(T) = s'.intentions(T)(T,v)
s.intentions(U) = s'.intentions(U) for U 3 T

When an access transaction is created, it is added to the set create requested. A response containing

return value v to an access T can be returned only if the access has been requested but not yet responded

38

to, every holder of a conflicting lock is an ancestor of T, and v is a value such that perform(T,v) can

occur as operations of basic object X from a state of basic object X following the schedule

perform(total(s',T)). When a response is given, the access transaction is auded to run and the deed (T,v)

is appended to intentions(T) to indicate that the (T,v)-lock was granted. When a Conflict-Based Locking

object is informed of the abort of a transaction, it removes all locks held by descendants of the

transaction. When it is informed of a commit, it passes any locks held by the transaction to the parent,

appending them at the end of the parents intentions list.

We have the following obvious result, since W(X) has the appropriate operations and preserves well-

formedness:

Lemma 48: W(X) is a generic object.

8.1. Properties of W(X)

We first note that the holders of conflicting locks must always be related. This is guaranteed when a

lock is granted, and is maintained as locks are passed up from child to parent.
Lemma 49: If a is a well-formed schedule of W(X), s is the state of W(X) after a, T and T'

are unrelated transactions, (U,u) is in s.intentions(T), and (U',u') is in s.intentions(T'), then
((U,u),(U',u')) 6 CONFLICT.

The algorithm as -described above does not use all the information available to the object about the fate

of transactions, because it does not store the fact that an INFORMCOMMIT or INFORMABORT

operation has occurred. Thus we introduce some terms to describe the information W(X) uses about

commits, aborts and return order of transactions after a sequence a of operations of W(X). If a is a

sequence of operations of W(X), T is an access to X, and T' is an ancestor of T, we say that T is

lock-committed at X to T' in a, if ct contains a subsequence ft consisting of an

INFORMCOMMIT AT(X)OF(U) event for every U that is an ancestor of T and a proper descendant

of T', arranged in ascending order (so the INFORMCOMMIT for parent(U) is preceded by that for U).

If a is a well-formed sequence of operations of W(X), T is an access to X, and T' is any transaction, we

say that T is lock-visible at X to T' in a if T is lock-committed at X to lca(T,T'). It is obvious that if T

is lock-committed at X to T' in a, then T is committed at X to T' in a. Similarly if T is lock-visible at

X to T' in a then T is visible at X to T' in a.

Given a sequence a of operations of W(X), we define a binary relation lock-return-at-XT(a) on accesses

to X, where (U,U') E return-at-XT(o) exactly when U 34 U', a contains both REQUEST_ COMMIT(U,v)

and REQUEST_ COMMIT(U',v') for some values v and v', and U is lock-visible at X to U' in a', where

a' is the longest prefix of a not containing REQUEST_COMMIT(U',v'). We will also consider the

induced relations lock-return-at-XE(a) on the events of a, and lock-retur:I-at-XD(&) on deeds at X. The

first is defined by the condition that (O,i) E lock-return-at-XE(a) if and only if 0 and ir are events of o

39

mentioning accesses U and U' respectively, and (U,U') E lock-return-at-XT(a). Similarly, we define the

second by ((U,v),(U',v')) E lock-return-atl-XD(a) if and only if (O,r) E lock-return-at-XE(a), where

0=REQUEST_COMMIT(U,v) and ir=REQUESTCOMMIT(U',v'). It is clear that

lock-return-at-XT(a) is a subrelation of return-at-XT(a).

The following lemma, which can be proved by a straightforward i-aduction, shows which locks are held

by a transaction after a schedule of W(X).

Lemma 50s Let a be a well-formed schedule of W(X), and s the state of W(X) reached by
applying a to the initial state. Let T be an access to X such that REQUEST COMMlT(T,v)
occurs in a and T is not an orphan at X in a, and let T' be the highest ancestor of T such that
T is lock-committed at X to T' in a. Then (T,v) is a member of s.intentions(T'). Conversely,
if (U,u) is an element of s.intentions(U') then U is a descendant of U',
REQUEST_ COMMIT(U,u) occurs in a, and U' is the highest ancestor of U to which U is
lock-committed at X in a.

Now for the main result, which shows that, provided the relation CONFLICT includes all non-

commuting deeds, certain sequences of operations, extracted from a well-formed schedule of W(X), are

well-formed schedules of basic object X. The extra conclusion, that some of these schedules are

equieffective, is needed to carry out the induction step of the proof of this lemma. We say that a binary

relation CONFLICT on deeds at X is permissible if for any two deeds (T,v) and (T',v') at X that do not

commute, ((T,v),(T',v')) E CONFLICT.

Lemma 51: Suppose CONFLICT is a permissible binary relation on deeds at X. Let W(X)
be the Conflict-Based Locking object constructed using CONFLICT, and let a be a well-
formed schedule of W(X). Let Z be a set of deeds at X such that for all (T,v) E Z, a contains
REQUEST_ COMMIT(T,v), T is not an orphan at X in a, and whenever ((T',v'),(T,v)) E
lock-return-at-X3(a) then (T',v') E Z. Let C and q be total orderings of Z such that each is
consistent with iock-return-at-XD(a). Then perform(f) and perform(g) are both well-formed
schedules of basic object X. Furthermore, perform(C) and perform(q) are equieffective.

Ptoof: The proof will use induction on the sise of the set Z. The basis case, when Z is
empty, is trivial. Otherwise, suppose Z contains k deeds, and the lemma has been proved for
all sets of k-i deeds. Let (U,u) denote the last element of C, and let Z' = Z - {(U,u)}. Also let
C=C'(U,u), and q=q,(U,u)q2 . Now let s' denote the state of W(X) after a', where a' is the
longest prefix of a not containing REQUEST_COMMIT(U,u). Finally, let |-=total(s',U), and

let 2 denote some total ordering, consistent with lock-return-at-XD(a), of the deeds in Z -
(total(s',U) U ((U,u))).

Clearly Z' is a set of k-l deeds that satisfies the conditions of the lemma, since there is no
deed (U',u') in Z such that ((U,u),(U',u')) E lock-return-at-XD(a). Also ' and nl% are total

orderings of Z' consistent with lock-return-at-X)(a). Furthermore by Lemma 50 the deeds in
total(s',U) are exactly those (U',u') such that ((U',u'),(U,u)) E lock-return-at-XD(a), and their
order is consistent with lock-return-at-XD(a). Since for every deed (U',u') in ,' and every deed

(U",u") in ;2' ((U",i"),(U',u')) 0 lock-return-at'XD(a), we have that i1 2 is also a total
ordering of Z' consistent with lock-return-at-XD(a). The induction hypothesis thus shows that

perform(C'), perform(' 1 q2), and perform(c,; 2) are all equieffective, well-formed schedules of

40

basic object X.

We now begin the proof that perform() and perform(ti) are well-forutd slhedules of X. "Vt
first show that (U,u) commutes with every deed (U",u") in .2. There are two possibilities:

either REQUEST _COMMIT(U",u") precedes REQUEST COMMIT(U,u) in a, or else
REQUEST_ COMMJT(U,u) precedes REQUEST _COMMIT(U",u") in a. In the first case, let
V denote the highest ancestor of U" to which U" is lock-committed at X in a'. By Lemma 50,
(U",u") E s'.intentions(V), but by definition of f2 V is not an ancestor of U. Therefore, by the

preconditions for REQUESTCOMMIT(U,u), which is enabled in state s', we must have that
((U,u),(U",u")) 1 CONFLICT, and therefore in this case (U,u) and (U",u") commute. In the
second case, let t denote the state of W(X) after a", the longest prefix of a not containing
REQUESTCONMIT(U",u"). Also let V denote the highest ancestor of U to which U is lock-
committed at X in a", so that (U,u) E t.intentions(V). Now V is not an ancestor of U", as
otherwise ((U,u),(U",u")) E lock-return-at-XD(a), contradicting the assumption that (U,u) was
the last element in . Thus by the preconditions for REQUEST COMMIT(U",u") as an
operation of W(X), ((U",u"),(U,u)) 0 CONFLICT, so in this case also, (U,u) and (U",u")
commute.

Note that by the preconditions for REQUEST_ COMMIT(U,u) as an operation of WV(X). we
have that perform(total(s',UXU,u)) is a schedule of basic object X, which is clearly well-
formed, since a is well-formed. That is, perform(,(U,u)) is a well-formed schedule of
X. However, we showed above that perfrm(, 2) is a well-formed schedule of X. Since (U,u)
commutes with every deed in 2, we have by Lemma 45 that perform(s1 52(U,u)) is a well-
formed schedule of X. Since we saw that perform(fir 2) is equieffective to perform(C'), and since
perform(C) perform(f'(U,u)) is clearly well-formed, Lemma 43 shows that perform(c) is 4
schedule of X that is equieffective to perform(q 2(U,u)). Similarly, since perform(C') is
equieffective to perform(,, 2), perform(f) is equieffective to perform(q 1q2 (U,u)). This
completes the proof that perform(C) is a well-formed schedule of X. By a symmetrical
argument, perform(q) is a well-formed schedule of X.

Since perform(q) is a well-formed schedule of X, we deduce that its prefix perform(q1 (U,u)) is

also a well-formed schedule of X. However the induction hypothesis showed that perform(,/tq 2)
is a well-formed schedule of X. Since every deed in , is contained in %j1, every dead in q2 is
contained in 2' and so (U,u) commutes with every deed in q.," Therefore perform(g)-
perform(q(U,u)q 2) is equieffective to perform(tq1 q2(U,u)), by Lemma 45. Since
perform(qq 2(U,u)) is equieffective to perform(f), we use Lemma 44 to deduce that perform(q)
is equieffective to perform(f), completing the proof. 0I

Now we can prove that our algorithm produces local-dynamic atomic generic objects.
Theorem 62: Suppose CONFLICT is a permissible binary relation on deeds at X. Let W(X)

be the Conflict-Based Locking object constructed using CONFLICT. Then W(X) is local-
dynamic atomic.

Proof: Let a-1 be a well-formed schedule of W(X), and T a transaction that is not an orphan
at X in a-1. Let # be a reordering of visible-at-X(aiT) that is consistent with return-at-XE(a)
and that is a well-formed sequence of operations of basic object X. We must show that P is a
schedule of basic object X. Consider the set Z of deeds (U,u) such that
REQUEST_COMMIT(U,u) occurs in #, and let f denote the unique total ordering of Z in
which (U,u) precedes (U',u') exactly when REQUEST_ COMMIT(U,u) p~recedes

41

REQUEST_COMMIT(U',u') in /f. Lemma 3 shows that P is equal to either perform(C) or
perform(C)CREATE(T') for some access T'. We observe that since T' is visible at X to T in a,
but a- does not contain a REQUESTCOMMIT operation for T', and so does not contain an
INFORM_COMMIT operation for T', we can deduce that T' must be equal to T.

We now show that I satisfies the conditions given in Lemma 51, and thus that perform(c) is a
schedule of basic object X. That is, suppose (U,u) E Z. We will demonstrate that aq contains
REQUESTCOMMIT(U,u), that U is not an orphan at X in a-y, and that whenever
((U',u'),(U,u)) E lock-return-at-X.D(ovy), then (U',u') E Z. We will also demonstrate that the

ordering C is consistent with lock-return-at-X (aq), by showing that the latter is a subrelation

of the former.

Since (U,u) E Z, REQUESTCOMMIT(U,u) occurs in fl, and thus in visible-at-X(Ary,T) and
therefore in a-y. Since U is visible at X to T in aor, and T is not an orphan at X in ay, we
deduce that U is not an orphan at X in a-y. If ((U',u'),(U,u)) E lock-return-at-X,,(ay), then &-y

must contain REQUEST COMMIT(U',u') and also U' is lock-visible at X to U in a prefix of
a-y. Thus U' is visible at X to U in a-y, and therefore U' is visible at X to T in aY. We deduce
that the REQUEST_COMMIT(U',u') event is in visible-at-X(aYrT), and therefore in /. That
is (U',u') E Z, as required. We also want to show that if ((U',u'),(U,u)) E
lock-return-at-XD(a'y), then (U',u') precedes (U,u) in , that is, that

REQUEST COMMIT(U',u') precedes REQUEST_COMMIT(U,u) in P. Since the order of
events in # is consistent with return-at-X2 (a), it suffices to show that (0,r) E return-at-XE(a)
where 0 = REQUEST COMMIT(U',u') and r = REQUEST_ COMN T(U,u). However if we
denote by a' the prefix of a preceding wr, then we know that U' is lock-visible at X to U in a',
and thus U' is visible at X to U in a', which establishes the fact that ((U',u'),(U,u)) E
return-at-XD(a), and thus that (#,r) e return-at-X(or).

Thus the demonstrations in the previous paragraph enable us to deduce that perform(f) is a
schedule of basic object X. Since 0 is either perform(c) or perform(C)CREATE(T), it is now
immediate that P is a schedule of basic object X, completing the proof that W(X) is local-
dynamic atomic. 0

An immediate consequence of Theorem 52, Lemma 42 and Corollary 34 is that if S is a Conflict-Based

Locking system, that is a generic system in which each generic object is a Conflict-Based Locking object

for any permissible choice of CONFLICT relation for that object, then S is serially correct for all non-

orphan transactions.

9. R/W Locking objects
We mentioned earlier that the algorithm for general conflict-based locking combines the techniques used

by Weihl in the absence of nesting with those used by Moss for Read/Write locking in nested transaction

systems. In this section, we recall the R/W Locking object automaton M(X), constructed in IFLMW] as a

formal model for an object using Moss' algorithm for concurrency control and recovery in a nested

transaction system. We show that if CONFLICT is chosen to include all pairs of deeds except those whose

first components are distinct read transactions, then the object W(X) is a suitable specification for M(X),

in the sense that any well-formed schedule of M(X) is a well-formed schedule of W(X). In fact, the

42

construction of M(X) is similar to that of W(X), the major difference being that the list of deeds stored in

the intentions component of the state of W(X) is replaced by a single version of the state of basic object

X, stored in the map component of the state of M(X).

In order to construct M(X) we need a classification of all the accesses to X into two classes, called

respectively the read aceeese and the write aeesses. We say that this classification is permissible if

whenever T is a read access, then (T,v) is a transparent deed at X for any v. If C is a sequence of deeds at

X, we let write(f) denote the subsequence consisting of those deeds whose first components are write

accesses. When the classification is permissible, Lemma 46 implies that if perform(f) is a well-formed

schedule of X, then perform(write(f)) is an equieffective well-formed schedule of X.

We first reproduce the construction of M(X) from [FLMW]. M(X) has the following operations.

Input operations:
CREATE(T), for T an access to X
INFORMCOMMITAT(X)OF(T), T 7 To

INFORMABORT AT(X)OF(T), T 7 To

Output operations:
REQUEST_ OOMMIT(T,v), for T an access to X

A state s of M(X) consists of the following five components: s.write-lockholders, s.read-lockholders,

s.create_requested, and s.run, which are sets of transactions, and s.map, which is a function from s.write-

lockholders to states of the basic object X. We say that a transaction in write-lockholders holds a

write-lock, and similarly that a transaction in read-lockholders holds a read-lock. We say two locks

conflict if they are held by different transactions and at least one is a write-lock. The initial states of

M(X) are those in which write-lockholders = (TO) and map(T0) is an initial state of the basic object X,

and the other components are empty. The transition relation of M(X) is given by all triples (s',t,s)

satisfying the following pre- and posteonditions, given separately for each w. As before, any component of

s not mentioned in the postcondition is the same in s as in s'.

CREATE(T), T an access to X
Postcondition:

s.create_ requested = s'.create requested U (T)

INFORMCOMMITAT(X)OF(T), T 7 To

Postcondition:
if T E s'.write-lockholders then

begin
s.write-lockholdes = (s'.write-lockholders - (T)) U {parent(T))
s.map(U) =- s'.map(U) for U E s.write-lockholder - (parent(T))
s.map(parent(T)) z s'.map(T)

end
if T E s'.read-lockholders then

begin

s.read-lockholders =(s'.read-Iockholders - IT)) U (parent4T))
end

INFORM ABORTAT(X)OF(T), T 74T
Postcondition:

swrite-lockholders - s'.write-Iockholders - descendants(T)
s*read-lockholders =s'.read-lockholders - descendants(T)
s.map(U) = s'.map(U) for all U 4E s.write-lockholders

REQUEST_ COMMIHT(T,v) for T a write access to X
Precondition:

T E s'.create- requested - s'.run
a' .write-lockholders U s'.read-lockholders C ancestiors(T)
there are states t, t' of basic object X so that

(s'.map(lea~st(s'.write-lockholders)),CREATE(T),t)
and (tREQUEST_COMMIfT(T,v),t')
are in the transition relation of basic object X

Postcondition:
s.run - s'.run U {T)

: write-lockholders - s'.write-lockholders U {T)
s*map(U) - s'.inap(U) for all U E s.write-loekholders - (T)

s.map(T) =t

REQUEST_. GOMMIT(T,v) for T a read access to X
Precondition:

T 4E s.create__requested - s'.run
9'.wrt-lockholders C ancestors(T)
there are states t, t' of basic object X so that

(s'.map(least(s'.write-lockholders)),CREA1E(T),t)
and (t,REQUESTCOMMJT(Tv),t')
are in the transition relation of basic object X

Postcondition:
srun -s'.run U IT)

sread-lockholders - s'.read-lockholders U {T)

It is clear that a R/W Locking object preserves well-formedness, and so is a generic object.

When an access transaction is created, it is added to the set create-requested. A response containing

return value v to an access T can be returned only if the access has been requested but not yet responded

to, every holder of a conflicting lock is an ancestor of T, and v is a value that can be returned by basic

object X in the response to T from a state obtained by, performing CREATE(T) in the state that is the

value of map at the least member of write-lockholders . When a response is given, the access transaction

is added to run and granted the appropriate lock, and if the transaction in a write access, the resulting

state is stored as map(T). If the transaction is aread access, no change is made to the stored state of the

basic object X, i.e. to map.

44

When a R/W Locking object is a rmed of the abort of a transaction, it removes aNi locks held by

descendants of the transaction. When it is informed of a commit, it paw"e any locks held by the

transaction to the parent, and also passes the version stored in map, if there is one. 12

We use the same terms (with the same definitions) to describe which transactions are lock-commnitted at

X, aborted at X, etc. that we used for W(X).

Here are some simple facts about the state of M(X) after a schedule a, each easily proved by induction

on the length of the schedule.
Lemma 55: Let a be a schedule of M(X), and s a state of M(X) reached by applying a to an

initial state. Suppose T E s.writelockholders and T' E. s.read-lockholders U s.write-lockholer.
Then either T is an ancestor of T' or else T' is an ancestor of T.

Lemma 54: Let a be a well-formed schedule of M(X), and s a state of M(X) reached by
applying ar to an initial state. If T is an access to X such that REQUEST_ COM41T(T,v)
occurs in a and T is not an orphan at X in a, let T' be the highest ancestor of T such that T
is lock-committed at X to T' in o. Theo if T is a write access, T' must be a member of smwritie-
lockholders, while if T is a read access, T' must be a member of s.read-lockholders. Conversely,
if T' is a member of s.write-lockliolders, then there is some write access T to X such that
REQUEST _CON4T(T,v) occurs in a, T is not an orphan at X in a, and T' is the high"&t
ancestor of T such that T is lock-committed at X to T' in a. Similarly if T' is a member at
s.read-lockholders, then there is some read access T to X such that
REQUEST_ CO1~MIT(T,v) occurs in a, T is not an orphan at X in a, and T' is the highest
ancestor of T such that T is lock-committed at X to T' in at.

0.1. The relatkoship between M4(X) anid W(X)

Now we construct a relation CONFLICT between deeds at X, by defining ((T,v),(T',v')) C- CONFLICT

unless T and T' are distinct read accesm to X. We consider the conflict-based locking object W(X)

constructed using this relation. If the classification of accesses used by M(X) is permissible, then Lemma

47 implies that any pair of deeds that do not commute are in the relation, hence CONFLICT is

permissible and so W(X) is dynamic atomic. The following results show how the behavior of M(X) is

related to that of W(X). Thle first lemma is straightforward, since the pobteonditions for each operation

of M(X) are similar to the postconditions for the same operation of W(X). The second establishes the

correspondence between the state of X stored by M(X) in map, and the schedule of X stored by W(X) in

intentions. The third is the result we want, which shows that in an environment that ensures well-

formedness (in particular in a generic system) any behavior of M(X) is a possible behavior for %%(X)

provided M(X) is constructed using a permissible clasification. Thus M(X) is local-dynamic atomic if the

classification used is permissible.

th &e reader wishes to compare our veralos or the algorithm with that in [Mol, the folowing may be seefu: bim gives tWe
sme 'the associated state' for object X and traastets T to what we call a.mapIT') where T' is the least ase of T in
@.writlocholdrm, ad he cails o~npIatmwit-obndm 'hre cilrrent state' of X Ako, he removes a read-loch whben tbe
owner also holds a write-lock (this Is an optimization that dm:., not affect the c-rrectness proof). Moss also allows interval
traasactioms to directly sem objete, whereas we allow only leaf trnsactions to performn data access.

45

Lemma 55, Let a be a well-formed schedule of M(X) that is also a well-formed schedule of
W(X). Let a be a -tate er M(X) rearhed by applying a to an initial state of hl(X), and let t be
the unique state of W(X) reached by applying a to the initial state of W(X). Then
s.ereaterequested =4.createrequested, s.run=t.run, s.write-lIockholders is the set of T such
that t.intentions(T) contains a deed whose first component is a write access to X, and s.read-
lockholders is the set of T such that t.intentions(T) contains a deed whose first component is a
read access to X.

Lemma SO: Let M(X) be constructed using a permissible classification of accesses to X. Let
a be a well-formed schedule of M(X) that is also a well-formed schedule of W(X). Let s be a
state of M(X) reached by applying a to an initial state of M(X), and let t be the unique state
of W(X) reached by applying a to the initial state of W(X). Then for every transaction T
perform(write(total(t,T))) is a well-formed schedule of basic object X that can leave X in the
state s.map(T'), where T' is the least ancestor of T such that T' E s.write-lockholders.

Proof: We use induction on the length of a. The basis case is trivial, so let a = a'ir, where
a' is a well-formed schedule of M(X). Let s' denote a state of M(X) after applying a' such that
(s',ir,s) is a step of M(X). Also let t' denote the state of W(X) after ar'. There are five cases,
for each of which we will relate smap to s'.map, and perform(write(total(t,T))) to
perform(write(total(t',T))).

(1)1i is CREATE(U) for an access U to X.
The postconditions of ir as an operation of M(X) and W(X) show that s.map=s' .map, s.write-
lockholders-s'.write-lockholders, and t.intentions==t'.intentions. Thus T' is also the least
ancestor of T in s'.write-lockholders, and so the induction hypothesis says that
perform(write(toWa(t',T))) is a well-formed schedule of X that can leave X in state s'.map(T').
That is, perform(write(total(t,T))) is a well-formed schedule of X that can leave X in state
s. map(T').

(2) wr is REQUEST_ CONMIT(U,u) for U a read access to X.
Examining the postconditions for w as an operation of M(X) and W(X) we see that
s.map(W)=s'.map(W) for all W, and s.write-lockholders -s'.write-lockholders, and also
t-intentions(W)=t'.intentiona(W) unless W=U. Thus T' is the least ancestor of T in s'.write-
lockholders, and s.map(T')=s.map(T'). MAo, if T .P U, total(t,T)=total(t',T). On the other
hand, if U=T, total(t,T)=total(t',TXU,u), so write(total(t,T))==write(total(t',T)). In either
case, perform(write(total(t,T)))-perforni(write(total(t',T)))), which is, by the induction
hypothesis, a well-formed schedule of X that can leave X in state s'.map(T')=s.map(T'), as
required.

(3) ar is REQUEST_ COMMIT(U,u) for U a write access to X.
Examining the postconditions for 7r as an operation of M(X) and W(X) we see that

s map(W)=s'.map(W) unless W-U, and s.write-lockholders =' .write-lockholders U (W),
ad also t.intentions(W)=t'.intentions(W) unless W=U. Thus if U 76 T, T' is the least

ancestor of T in s'.write-lockholders, and s.map(T')-s'.map(T'). Also, if T 74 U,
total(t,T)=total(t',T). and so the induction hypothesis shows that
perform(write(total(t,T)))I=perform(write~otal(t',T)))) is a well-formed schedule of basic object
X that can leave X in state s'.map(T')-s.map(T'). On the other hand, if U=T,
total(t,T)-total(t',U(U,u), so perform(write(total(t,T)))
perform(write(total(t',U)))perform(U,u). Since jr is enabled as an operation of M(X) in state s',
perform(U,u) can take place starting from state s'.map(U') where U'==leasqs'.write-
lockholders), and the posteonditions for ar ensure that s.map(U) is a state that can result from
this application. Since all members of s'.write-lockholders must be ancestors of U, U' is the
least ancestor of U in s'.write-lockholders, and so the induction hypothesis implies that

46

perform(write~total(t',U))) is a well-formed schedule of basic object X that can leave X in state
s '.map(U').. Combining these facts, we see that when U=T, perform(write(total(t,T))) is a well-
formed schedule of X that can leave X in state s.map(U)==s.map(T). as required.

(4) ir is INFORMCOMMITAT(X)OF(U)
Now t.intentions(W)=t'.intentions(W) unless W=U or W~parent(U). Similarly
s.map(W)=s'.map(W) unless W U or W~parent(U). The discussion is divided into subcases,
depending on the relation of T and U in the transaction tree.

(i) U is an ancestor of 1'.
If U is the least ancestor of T in s'.write-lockholders then by the definition of Ml(X), T' muust
be parent(U) and s.map(T') = s'.map(U), while if U is not the least ancestor of T in s'.write-
Iockholders then T' must be the least ancestor of T in s'.write-lockbolders and s.map(T')=
s '.map(T'). In either case, s.map(T') is s'.map(T"), where T" is the least ancestor of T in
5' .write-lockholders. Also tota1(t,T)=total(t,T). The desired result follows immediately from
the inductive hypothesis.

(ii) U is not an ancestor of T, but parent(U) is an ancestor of T.
Here we give separate arguments, depending on whether U is in s'.write-lockholders or not. If
U E s'.write-lockholders then Lemma 53 implies that no ancestor of T that is a strict
descendant of parent(U) can be in s'.write-lockholders or in s'.read-lockholders. The definition
of M(X) therefore shows that T' = parent(U) and that s.map(T') s'.map(U). Also we note
that some deed in t'.intentions(U) must be a deed of a write access, and that t'.intentiona(W)
must be empty for all W that are ancestors of T and strict descendants of parent(U).
Therefore total(t,T)=total(t,parent(U))=total(t',U). By the induction hypothesis
perform(write(total(t',U))) is a well-formed schedule of X that can leave X in state s'.map(U),
that is perform(write(total(t,T))) is a well-formed schedule of X that can leave X in state
s.map(T).

On the other hand, if U J! s'.write-lockholders then s.write-lockholders =a' .writeL-lockholders
and s.map = '.map. Thus T' is the least ancestor of T in s'.write-lockholders, and
s.map(T')=s'.niap(T'). Also no deed in t'.intentions(U) can be a deed of a write access. Since
total(t,,T) is formed from total(t',T) by the insertion of t'.intentions(U) after the prefix
total(t',parent(U)), write(total(t,T))==write(total(t',T)). Thus perforin(write(total(t,T))) =
perform(write(total(t',T))) is, by the induction hypothesis, a well-formed schedule of basic
object X that can leave X in state 9'.map(T')=s.map(T') as required.

(iii) parent(U) is not an ancestor of T.
Then T' is the least ancestor of T in s'.write-lockholders and s.map(T') = s'.map(T'). Also
total(t,T)=total(t',T). The desired result follows immediately from the inductive hypothesis.

(5) xr is INFORM_-AI3ORTAT(X)OF(U).
We distinguish two subcases, according to the relationship between U and T. If U is an
ancestor of T, then total(t,T)=total(t,parent(U))=total(t',parcn(U)), as t.intentions(U') is
empty for all U' descended from U, but is equal to t'.intcntions(IJ') otherwise. By the induction
hypothesis, perform(write(total(t,T))) ==perform(write(total(t',parent(U)))) is a well-formed
schedule of X that can leave X in state s'.map(T"), where T" is the least ancestor of parent(U)
in s'.write-lockholders. However, since s.write-lockh'.lders-=s'.write-ockholders -
descendants(IJ), T" is also the least ancestor of T in s.write-lockholders, thus T"=-T'. Since
s.map(T")=,.'.map(T"), at; T" is not a descendant of I i, this coniplet es the proof of tht lemmna
in this subcase.

47

If U is not an ancestor of T, then total(t,T)=total(t',T), so by the induction hypothesis
perform(write(total(t,T))) is a well-formed schedule of X that can leave X in state
s'.map(T')=s.map(T'), since T' is also the least ancestor of T in s'.write-lockholders. 0

Lemma 57s Let M(X) be constructed using a permissible classification of the accesses to X
and let a be a well-formed schedule of M(X). Then a is a well-formed schedule of W(X).

Proofs Since the definition of well-forinedness is the same for all generic objects, we need
only show that a is a schedule of W(X). We use induction on the length of a. The basis case is
trivial, so let a = a'xr, where a' is a well-formed schedule of M(X). If rf is an input to W(X),
the Input Condition implies that a is a schedule of W(X). Thus we have only two other cases
to consider.

(1) x is REQUEST_ COMMIT(U,u) for U a read access to X.
Let s' denote a state of M(X) after applying a' such that r is enabled as an operation of M(X)
after s'. Let t' denote the state of W(X) after a'. We wish to show that ir is enabled as an
operation of W(X) in state t'. That is, we need to show that U E t'.create_ requested - t'.run,
that whenever U' ! ancestors(U) and (V,v) is a deed in t'.intentions(U') then ((U,u),(V,v)) 0
CONFLICT, and that perform(total(t',UXU,u)) is a schedule of basic object X. Since ir is
enabled as an operation of M(X) in state 9', we have that U E s'.create requested - s'.run,
that whenever U' E s'.write-lockholders then U' E ancestors(U), and that perform(U,u) can be
performed by X from state s'.map(least(s'.write-lockholders)).

Lemma 55 shows that t'.createrequested = s'.create_ requested, and t'.run = s'.run.
Therefore we deduce that U E t'.create requested - t'.run.

Lemma 55 also shows that when V is a write access such that (V,v) is a deed in
t'.intentions(U'), then U' E s'.write-lockholders, and hence U' must be an ancestor of U. Also,
since U is a read access, the construction of the CONFLICT relation shows that ((U,u)(V,v)) E
CONFLICT implies that either U=V, or else V is a write access. Therefore, if (Vv) is a deed
in t'.intentions(U') (so U' is an ancestor of V) and ((U,u),(Vv)) E CONFLICT, the facts just
proved show that U' must be an ancestor of U. Equivalently, if U' is not an ancestor of U, and
(V,v) is a deed in t'.intentions(U') then ((U,u),(V,v)) 0 CONFLICT.

Finally, let U'= least(s'.write-lockholders). We note that U' must be an ancestor of U and is
thus the least ancestor of U in s'.write-lockholders. Therefore Lemma 56 implies that
perform(write(total(t',U))) is a schedule of X that can leave X in state s'.map(U'). Then we can
deduce that perform(write(total(t',U)))perform(U,u) is a schedule of X. Since
perform(write(total(t'.U))) is equieffective to perform(total(t',U)),

*perform(total(t',U))perform(U,u) - perform(total(t',UXU,u)) is a schedule of basic object X,
since it is well-formed. This completes the proof that a is a schedule of W(X).

(2) f is REQUEST_ COMMIT(U,u) for U a write access to X.
Let a' denote a state of M(X) after applying a' such that ir is enabled as an operation of M(X)
after s'. Let t' denote the state of W(X) after a'. We wish to show that 7r is enabled as an
operation of W(X) in state t'. The proof that U e t'.create requested - t'.run, and that
perform(total(t',UXU,u)) is a schedule of basic object X, is identical to that in case (1) above.
We also must show that whenever U' 0 ancestore(U) and (Vv) is a deed in t'.intentions(U')
then ((U,u),(Vv)) I CONFLICT. We will prove the equivalent statement that if
t'.intentions(U') is not the empty sequence, then U' E ancestors(U). By Lemma 55, if (V,v) E
t'.intentiona(U') and V is a write access then U e s'.write-lockholders, while if (V,v) 6
t'.intentions(U') and V is a read access then U E s'.read-lockholders. However, since r is
enabled as an operation of M(X) in state s', we have that whenever U' C s'.read-lockholders U

48

s'.write-lockholders then U' E ancestors(U), completing the demonstration that a is a schedule
of W(X). 0

Corollary 58: Let M(X) be constructed using a permissible classification of accesses at
X. Then M(X) is local-dynamic atomic.

An immediate consequence of Corollary 58, Lemma 42, and Corollary 34 is that if S is a R/W Locking

eyjtem, that is a generic system in which each generic object is a R/W Locking object for any permissible

classification of accesses to that object, then S is serially correct for all non-orphan transactions. This was

the main result of [FLMW). Furthermore, we note that it is always permissible to classify all accesses as

write accesses. If that is done, Moss' algorithm degenerates into Exclusive Locking. Thus our results also

imply the correctness of Exclusive Locking systems, which was the main theorem of ILM (albeit with

slight differences in the definitions of the system components).

10. Conclusions and Further Work
We have used I/O automata to provide clear formal descriptions of all the components of a nested

transaction system. We have demonstrated that any schedule of a Conflict-Based Locking system is

serially correct for every non-orphan transaction. We have also shown that our new conflict-based

algorithm can be combined with Moss' algorithm using read- and write-locks. Indeed, we have shown that

a nested transaction system is serially correct so long as each data object has a simple local property

called dynamic atomicity. We have shown how to take any schedule of such a system, extract a

subsequence (including all the operations of a given non-orphan transaction), and rearrange the events in

the subsequence to give a serial schedule.

This work by no means exhausts the topic of concurrency control and recovery in nested transaction

systems. Recent work on timestamp-based concurrency control [As] uses arguments very similar to those

in this paper. We hope in the near future to combine these results in a uniform framework. We als hope

to extend the results of this paper in several ways. One natural extension is to locking protocols for

abstract data types that are built by combining atomic entities of primitive type, for example a queue

built from atomic elements. Such protocols have been studied in transaction systems without nesting

[We]. We expect that it should be possible to prove that the combined type is dynamic atomic if the

individual entries are.

Other aspects of real systems that we have not addressed in this paper, but expect to study in the

future, are liveness properties and resilience to system crashes. We have proved that ay response to a

Conflict-Based Locking system is correct, but for a practical system we also need to know that a response

will be produced (and, we hope, rapidly produced.) Lynch and Tuttle [LT discuss how to eupress liveness

results in terms of i/O automata, but phenomena such as deadlock in transaction system make it

difficult to guarantee strong liveness properties. At best, any guarantees that progrm can be made will

49

be probabilistic. System crashes, that cause information (such as lock tables) to be lost, are also a reality

of practical systems. We plan to extend the model presented in this paper to describe crashes, and to

analyze algorithms that ensure resilience to crashes.

11. Acknowledgements
We thank the members of the Theory of Distributed Systems seminar at MIT for many helpful

suggestions.

12. References
[A] Allchin, J.E., "An Architecture for Reliable Decentralized Systems", Ph.D. Thesis,

School of Info. and Comp. Sci., Georgia Institute of Technology, September 1983.

[As] Aspnes, J., "Timestamp Ordering and Nested Transactions," M.S. Thesis, MIT
Laboratory for Computer Science, Cambridge, MA., June 1987.

[BBG] Beeri, C., Bernstein, P. A., and Goodman, N., "A Model for Concurrency in Nested
Transaction Systems," Technical Report, Wang Institute TR-86-03, March 1986.

[BBGLS] Beeri, C., Bernstein, P. A., Goodman, N., Lai, M. Y., and Shasha, D. E., *A
Concurrency Control Theory for Nested Transactions," Proceedings of the 2nd ACM
Symposium on Principles of Dis" ibuted Computing, 1983, pp. 45-62.

[BGj Bernstein, P. A., and Goodman, N., *Concurrency Control in Distributed Database
Systems,I ACM Computing Surveys 13,2 (June 1981), pp. 185-221.

[D] Davies, C. T., "Recovery Semantics for a DB/DC System," Proc. ACM National
Conference 28, 1973, pp. 136-141.

[EGLT] Eswaren, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L., "The Notions of
Consistency and Predicate Locks in Database Systems, = Communications of the ACM,
Vol. 19, No. 11, November 1976, pp. 624-633.

[FLMWI Fekete, A., Lynch, N., Merritt, M., and Weihl, W., "Nested Transactions and
Read/Write Locking," Proceedings of 8th ACM Symposium on Principles of Database
Systems, 1987, pp. 97-111. An expanded version is available as Technical Memo
MIT/LCS/TM-324, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA., April 1987.

[GLI Goldman, K., and Lynch, N., "Nested Transactions and Quorum Consensus,"
Proceedings of 6th ACM Symposium on Principles of Distributed Computation, 1987,
pp. 27-41. An expanded version is available as Technical Report MIT/LCS/TR-390,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA., May 1987.

[Go Goree, J., "Internal Consistency Of A Distributed Transaction System With Orphan
Detection," MS Thesis, TR-286, Laboratory for Computer Science, MIT, January 1983.

50

[Gr1 Gray, J., "Note on Database Operating Systems," in Bayer, R., Graham, R; aii4
Seegmuller, G. (eds), Operating Systems: an Advanced Course, Lecture NotesQ. is.
Computer Science, Vol. 60, Springer-Verlag, 1978.

[HLMWj Hrliby, M., Lynch, N., Merritt, M., and Weihl, W., "On the Correctness of Orphan
Elimination Algorithms," Proceedings of 17th IEEE Symposium on Fault-Tolerant
Computing, 1987, pp. 8-13.

[Ho] Hoare, C. A. R., "Communicating Sequential Processes," Prentice Hall Internatioitai,
1985.

fiKol Korth, H. F., "Deadlock Freedom Using Edge Locks," ACM Thans. on. Database
Systems, Vol. 7, No. 4, December 1982, pp. 632-652.

[KS] Kedem, Z., and Silbersechats, A., "Non-two phase locking protocols with shared' andi
exclusive locks," Fioe. Int. Conference on Very Large Data Bases, 1980, pp. 3093W'

[LHJLSW] Liskov, B., Herlihy, M., Johnson, P., Leavens, G., Scheifler, R., and Weihl, W:,.
"Preliminary Argus Reference Manual," Programming Methodologyr Group Memo 30,
October 1983.

[LiS] Liskov, B., and Scheifler, R., "Guardians and Actions: Linguistic Support for Rlbus,
Distributed Programs*, ACM Transactions on P ogrrmming Language. and Spateo
Vol. 6, No. 3 , July 1983, pp. 381-404.

[LM] Lynch, N., and Merritt, M., *Introduction to the Theory of Nested. Transawtjon*,"
Technical Report MIT/LCS/TR-367, MIT Laboratory for Computer Sacie,
Cambridge, MA., July 1966.

[LTj Lynch, N., and Tuttle, M., "Hierarchical Correctness Proofs for Diatrvmt4
Algorithms," Proceedings of 6th ACM Symposium on Principles ot Dirihed
Computation, 1987, pp. 137-151. An expanded version is available as Technical Rapoqt
MIT/LCS/TR-387, Laboratory for Computer Science, Massachusetts Institute of-
Technology, Cambridge, MA., April 1987.

[Ly] Lynch, N. A., "Concurrency Control For Resilient Nested Transactions," Advance n
Computing Research 3, 1986, pp. 335-373.

[MGG] Moss, J. E. B., Griffeth, N. D., and Graham, M. H., "Abstraction in Concurreney
Control and Recovery Management" Technical Report 86-20, COINS University of
Massachussetts, Amherst, MA., May 1986.

IMol Mos, J. E. B., "Nested Transactions: An Approach To Reliable Distributed
Computing," Ph.D. Thesis, Technical Report MIT/LCS/TR-260, MIT Laboratory for
Computer Science, Cambridge, MA., April 1981. Also, published by MIT Pres, March
1986.

[P] Papadlmitriou, C. H., "The Serialisability of Concurrent Database Updates," J.AOM
Vol. 26, No. 4, October 1979, pp.631-653.

51

[R] Reed, D. P., mNaming and Synchronisation in a Decentralized Computer System,
Ph.D Thesis, Technical Report MIT/LCS/TR-205, MIT Laboratory for Computer
Science, Cambridge, MA 1978.

[T] Thomas, R. H., OA Majority Consensus Approach to Concurrency Control for Multiple
Copy Databases,* ACM Trans. on Database Systems, Vol. 4, No. 2, June 1979, pp.
180-209.

[We] Weihl, W. E., "Specification and Implementation of Atomic Data Types," Ph.D Thesis,
Technical Report/MIT/LCS/TR-314, MIT Laboratory for Computer Science,
Cambridge, MA., March 1984.

OFFILIAL DISTRIBUTION LIST

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies......--
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Programr. Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hooper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

£oo

.(C-..

